Structural Mechanism of Trimeric HIV-1 Envelope Glycoprotein Activation

被引:169
作者
Tran, Erin E. H. [1 ]
Borgnia, Mario J. [1 ]
Kuybeda, Oleg [2 ]
Schauder, David M. [1 ]
Bartesaghi, Alberto [1 ]
Frank, Gabriel A. [1 ]
Sapiro, Guillermo [2 ]
Milne, Jacqueline L. S. [1 ]
Subramaniam, Sriram [1 ]
机构
[1] NCI, Cell Biol Lab, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN USA
基金
美国国家科学基金会;
关键词
HUMAN-IMMUNODEFICIENCY-VIRUS; CONFORMATIONAL-CHANGES; NEUTRALIZING ANTIBODIES; SOLUBLE CD4; MONOCLONAL-ANTIBODIES; PEPTIDE INHIBITOR; TYPE-1; ENV; GP120; FUSION; BINDING;
D O I
10.1371/journal.ppat.1002797
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env) to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at similar to 9 angstrom resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of alpha-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Short Communication: Virion Aggregation by Neutralizing and Nonneutralizing Antibodies to the HIV-1 Envelope Glycoprotein [J].
Alexander, Marina R. ;
Sanders, Rogier W. ;
Moore, John P. ;
Klasse, Per Johan .
AIDS RESEARCH AND HUMAN RETROVIRUSES, 2015, 31 (11) :1160-1165
[32]   Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview [J].
Nardacci, R. ;
Perfettini, J-L ;
Grieco, L. ;
Thieffry, D. ;
Kroemer, G. ;
Piacentini, M. .
CELL DEATH & DISEASE, 2015, 6 :e1846-e1846
[33]   Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers [J].
Schorcht, Anna ;
van den Kerkhof, Tom L. G. M. ;
Cottrell, Christopher A. ;
Allen, Joel D. ;
Torres, Jonathan L. ;
Behrens, Anna-Janina ;
Schermer, Edith E. ;
Burger, Judith A. ;
de Taeye, Steven W. ;
de la Pena, Alba Torrents ;
Bontjer, Ilja ;
Gumbs, Stephanie ;
Ozorowski, Gabriel ;
LaBranche, Celia C. ;
de Val, Natalia ;
Yasmeen, Anila ;
Klasse, Per Johan ;
Montefiori, David C. ;
Moore, John P. ;
Schuitemaker, Hanneke ;
Crispin, Max ;
van Gils, Marit J. ;
Ward, Andrew B. ;
Sanders, Rogier W. .
JOURNAL OF VIROLOGY, 2020, 94 (24)
[34]   IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein [J].
Yu, Jingyou ;
Li, Minghua ;
Wilkins, Jordan ;
Ding, Shilei ;
Swartz, Talia H. ;
Esposito, Anthony M. ;
Zheng, Yi-Min ;
Freed, Eric O. ;
Liang, Chen ;
Chen, Benjamin K. ;
Liu, Shan-Lu .
CELL REPORTS, 2015, 13 (01) :145-156
[35]   Involvement of Envelope-Glycoprotein Glycans in HIV-1 Biology and Infection [J].
Raska, Milan ;
Novak, Jan .
ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2010, 58 (03) :191-208
[36]   HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion [J].
Beitari, Saina ;
Wang, Yimeng ;
Liu, Shan-Lu ;
Liang, Chen .
VIRUSES-BASEL, 2019, 11 (04)
[37]   A monomeric envelope glycoprotein cytoplasmic tail is sufficient for HIV-1 Gag lattice trapping and incorporation [J].
Groves, Nicholas S. ;
Clark, Austin R. ;
Aguilar, Rebekah S. ;
Hikichi, Yuta ;
Kostenko, Anastasiia ;
Bruns, Merissa M. ;
Aron, Alegra T. ;
Freed, Eric O. ;
van Engelenburg, Schuyler B. .
JOURNAL OF VIROLOGY, 2025, 99 (05)
[38]   Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers [J].
Go, Eden P. ;
Ding, Haitao ;
Zhang, Shijian ;
Ringe, Rajesh P. ;
Nicely, Nathan ;
Hua, David ;
Steinbock, Robert T. ;
Golabek, Michael ;
Alin, James ;
Alam, S. Munir ;
Cupo, Albert ;
Haynes, Barton F. ;
Kappes, John C. ;
Moore, John P. ;
Sodroski, Joseph G. ;
Desaire, Heather .
JOURNAL OF VIROLOGY, 2017, 91 (09)
[39]   The Design and Immunogenicity of an HIV-1 Clade C Pediatric Envelope Glycoprotein Stabilized by Multiple Platforms [J].
Kumar, Sanjeev ;
Moral-Sanchez, Ivan del ;
Singh, Swarandeep ;
Newby, Maddy L. ;
Allen, Joel D. ;
Bijl, Tom P. L. ;
Vaghani, Yog ;
Jing, Liang ;
Lodha, Rakesh ;
Ortlund, Eric A. ;
Crispin, Max ;
Patel, Anamika ;
Sanders, Rogier W. ;
Luthra, Kalpana .
VACCINES, 2025, 13 (02)
[40]   Mitochondrion-dependent caspase activation by the HIV-1 envelope [J].
Roumier, T ;
Castedo, M ;
Perfettini, JL ;
Andreau, K ;
Métivier, D ;
Zamzami, N ;
Kroemer, G .
BIOCHEMICAL PHARMACOLOGY, 2003, 66 (08) :1321-1329