Highly efficient La0.8Sr0.2MnO3-δ - Ce0.9Gd0.1O1.95 nanocomposite cathodes for solid oxide fuel cells

被引:19
作者
dos Santos-Gomez, L. [1 ]
Zamudio-Garcia, J. [1 ]
Porras-Vazquez, J. M. [1 ]
Losilla, E. R. [1 ]
Marrero-Lopez, D. [2 ]
机构
[1] Univ Malaga, Dept Quim Inorgan Cristalog & Mineral, E-29071 Malaga, Spain
[2] Univ Malaga, Dept Fis Aplicada 1, Lab Mat & Superficie, E-29071 Malaga, Spain
关键词
Solid Oxide Fuel Cells; La0.8Sr0.2MnO3-delta; CeO2; Spray-pyrolysis; SPRAY-PYROLYSIS; COMPOSITE CATHODES; ELECTROCHEMICAL PERFORMANCE; RATIONAL DESIGN; TEMPERATURE; MICROSTRUCTURE; ELECTRODES; DEPOSITION; FILMS; OPTIMIZATION;
D O I
10.1016/j.ceramint.2017.12.089
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
La0.8Sr0.2MnO3-delta-Ce0.9Gd0.1O1.95 (LSM-CGO) nanostructured cathodes are successfully prepared in a single process by a chemical spray -pyrolysis deposition method. The cathode is composed of nanometric particles of approximately 15 nm of diameter, providing high triple-phase boundary sites for the oxygen reduction reactions. A low polarization resistance of 0.046 Omega cm(2) is obtained at 700 degrees C, which is comparable to the most efficient cobaltite-based perovskite cathodes. A NiO-YSZ anode supported fuel cell with the nanostructured cathode generates a power output of 1.4 W cm(-2) at 800 degrees C, significantly higher than 0.75 W cm(-2) for a cell with conventional LSM-CGO cathode. The results suggest that this is a promising strategy to achieve high efficiency electrodes for Solid Oxide Fuel Cells in a single preparation step, simplifying notably the fabrication process compared to traditional methods.
引用
收藏
页码:4961 / 4966
页数:6
相关论文
共 39 条
[1]   Electrochemical performance of nanostructured La0.6Sr0.4CoO3-δ and Sm0.5Sr0.5CoO3-δ cathodes for IT-SOFCs [J].
Acuna, L. M. ;
Pena-Martinez, J. ;
Marrero-Lopez, D. ;
Fuentes, R. O. ;
Nunez, P. ;
Lamas, D. G. .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9276-9283
[2]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[3]  
[Anonymous], 2017, INORGANIC CRYSTAL ST, pv2017
[4]   High performance nanostructured IT-SOFC cathodes prepared by novel chemical method [J].
Baque, Laura ;
Caneiro, Alberto ;
Moreno, Mario S. ;
Serquis, Adriana .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1905-1908
[5]   Thin films for micro solid oxide fuel cells [J].
Beckel, D. ;
Bieberle-Huetter, A. ;
Harvey, A. ;
Infortuna, A. ;
Muecke, U. P. ;
Prestat, M. ;
Rupp, J. L. M. ;
Gauckler, L. J. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :325-345
[6]   Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells [J].
Celikbilek, Ozden ;
Jauffres, David ;
Siebert, Elisabeth ;
Dessemond, Laurent ;
Burriel, Monica ;
Martin, Christophe L. ;
Djurado, Elisabeth .
JOURNAL OF POWER SOURCES, 2016, 333 :72-82
[7]   Reasons for the high stability of nano-structured (La,Sr)MnO3 infiltrated Y2O3-ZrO2 composite oxygen electrodes of solid oxide electrolysis cells [J].
Chen, Kongfa ;
Ai, Na ;
Jiang, San Ping .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 19 :119-122
[8]   Microstructure and cathodic performance of La0.9Sr0.1MnO3/yttria-stabilized zirconia composite electrodes [J].
Choi, JH ;
Jang, JH ;
Oh, SM .
ELECTROCHIMICA ACTA, 2001, 46 (06) :867-874
[9]   Synthesis and characterization of nanoparticulate films for intermediate temperature solid oxide fuel cells [J].
Darbandi, Azad J. ;
Enz, Thorsten ;
Hahn, Horst .
SOLID STATE IONICS, 2009, 180 (4-5) :424-430
[10]   Enhancing SOFC cathode performance by surface modification through infiltration [J].
Ding, Dong ;
Li, Xiaxi ;
Lai, Samson Yuxiu ;
Gerdes, Kirk ;
Liu, Meilin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :552-575