On regular graphs with four distinct eigenvalues

被引:22
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Regular graphs; Eigenvalues; DS; 2; SINGULAR-VALUES; COMBINATORIAL DESIGNS;
D O I
10.1016/j.laa.2016.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g(4, 2) be the set of connected regular graphs with four distinct eigenvalues in which exactly two eigenvalues are simple, g(4, 2, -1) (resp. g(4, 2, 0)) the set of graphs belonging to g(4, 2) with -1 (resp. 0) as an eigenvalue, and g(4, >= -1) the set of connected regular graphs with four distinct eigenvalues and second least eigenvalue not less than -1. In this paper, we prove the non-existence of connected graphs having four distinct eigenvalues in which at least three eigenvalues are simple, and determine all the graphs in g(4, 2, -1). As a by-product of this work, we characterize all the graphs belonging to g(4, >= -1) and g(4, 2,0), respectively, and show that all these graphs are determined by their spectra. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 22 条
  • [1] Bridges W.G., 1981, Aequationes Mathematicae, V22, P208
  • [2] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [3] Biregular graphs with three eigenvalues
    Cheng, Xi-Ming
    Gavrilyuk, Alexander L.
    Greaves, Gary R. W.
    Koolen, Jack H.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 56 : 57 - 80
  • [4] Cioab SM, 2017, DESIGN CODE CRYPTOGR, V84, P153, DOI 10.1007/s10623-016-0241-4
  • [5] Cioaba SM, 2015, J ALGEBR COMB, V41, P887, DOI 10.1007/s10801-014-0557-y
  • [6] Cvetkovic D. M., 1979, SPECTRA OF GRAPHS TH
  • [7] A nonregular analogue of conference graphs
    de Caen, D
    van Dam, ER
    Spence, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (01) : 194 - 204
  • [8] de Lima L. S., 2016, LINEAR MULTILINEAR A
  • [9] DOOB M, 1970, ANN NY ACAD SCI, V175, P104, DOI 10.1111/j.1749-6632.1970.tb45122.x
  • [10] FEASIBILITY CONDITIONS FOR THE EXISTENCE OF WALK-REGULAR GRAPHS
    GODSIL, CD
    MCKAY, BD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 30 (APR) : 51 - 61