Estimations Asymptotiques du Noyau de la Chaleur Pour L'operateur de Grushin

被引:4
作者
Li, Hong-Quan [1 ]
机构
[1] Fudan Univ, Minist Educ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
关键词
Asymptotic property; Grushin operator; Heat Kernel; SOBOLEV-POINCARE INEQUALITIES; HEAT KERNEL; HEISENBERG-GROUP; SUBELLIPTIC OPERATORS; RIESZ TRANSFORM; BOUNDS; GRADIENT;
D O I
10.1080/03605302.2011.600800
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On etudie la propriete asymptotique du noyau de la chaleur pour l'operateur de Grushin Delta(G) = Delta(x) + vertical bar x vertical bar(2)Delta(u) sur R-r(n) x R-u(n)' avec n >= 3 et n' = 1. We study the asymptotic property for the heat kernel for the Grushin operator Delta(G) = Delta(x) + vertical bar x vertical bar(2)Delta(u) on R-x(n) x R-u(n)' with n >= 3 and n' = 1.
引用
收藏
页码:794 / 832
页数:39
相关论文
共 46 条
  • [1] Ane C., 2000, INEGALITES SOBOLEV L
  • [2] [Anonymous], 1993, LECT HERMITE LAGUERR
  • [3] [Anonymous], 1992, RES NOTICES, DOI DOI 10.1155/S1073792892000047
  • [4] Small-time asymptotic estimates in local Dirichlet spaces
    Ariyoshi, T
    Hino, M
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 1236 - 1259
  • [5] Riesz transform on manifolds and heat kernel regularity
    Auscher, P
    Coulhon, T
    Duong, XT
    Hofmann, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06): : 911 - 957
  • [6] Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
  • [7] Bakry D., THETA SER ADV MATH, V11
  • [8] Bakry D., 1985, Lecture Notes in Math., V1123
  • [9] On gradient bounds for the heat kernel on the Heisenberg group
    Bakry, Dominique
    Baudoin, Fabrice
    Bonnefont, Michel
    Chafai, Djalil
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) : 1905 - 1938
  • [10] Baudoin F., ARXIV09041623