Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125-Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and extended simple point charge water. Channel and bath currents were computed from 10 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration dependent and superlinear at high concentrations.