Enumerating sparse uniform hypergraphs with given degree sequence and forbidden edges

被引:4
作者
Aldosari, Haya S. [1 ]
Greenhill, Catherine [1 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
ASYMPTOTIC ENUMERATION;
D O I
10.1016/j.ejc.2018.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 3 and r = r(n) >= 3, let k = k(n) = (k(1), ..., k(n)) be a sequence of non-negative integers with sum M(k) = Sigma(n)(j=1) K-j. We assume that M(k) is divisible by r for infinitely many values of n, and restrict our attention to these values. Let X = X(n) be a simple r-uniform hypergraph on the vertex set V = {v(1), v(2), ..., v(n)} with t edges. We denote by H-r(k) the set of all simple r-uniform hypergraphs on the vertex set V with degree sequence k, and let H-r(k, X) be the set of all hypergraphs in H-r(k) which contain no edge of X. We give an asymptotic enumeration formula for the size of H-r(k, X). This formula holds when r(4)k(max)(3) = o(M(k)), t k(max)(3) = o(M(k)(2)) and r t k(max)(4) = o(M(k)(3)). Our proof involves the switching method. As a corollary, we obtain an asymptotic formula for the number of hypergraphs in H-r(k) which contain every edge of X. We apply this result to find asymptotic expressions for the expected number of perfect matchings and loose Hamilton cycles in a random hypergraph in H-r(k ) in the regular case. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 18 条
  • [1] Altman D., ARXIV161109423
  • [2] Multimedia Social Network modeling: a proposal
    Amato, Flora
    Moscato, Vincenzo
    Picariello, Antonio
    Sperli, Giancarlo
    [J]. 2016 IEEE TENTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2016, : 447 - 452
  • [3] The number of graphs and a random graph with a given degree sequence
    Barvinok, Alexander
    Hartigan, J. A.
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (03) : 301 - 348
  • [4] Blinovsky V, 2016, ELECTRON J COMB, V23
  • [5] Asymptotic enumeration of sparse uniform hypergraphs with given degrees
    Blinovsky, Vladimir
    Greenhill, Catherine
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 287 - 296
  • [6] Cooper C., 1996, COMB PROBAB COMPUT, V5, P1
  • [7] Diaz A. Espuny, ARXIV180309223
  • [8] A reductive approach to hypergraph clustering: An application to image segmentation
    Ducournau, Aurelien
    Bretto, Alain
    Rital, Soufiane
    Laget, Bernard
    [J]. PATTERN RECOGNITION, 2012, 45 (07) : 2788 - 2803
  • [9] Approximate counting of regular hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    Sileikis, Matas
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 785 - 788
  • [10] Hypergraphs and Cellular Networks
    Klamt, Steffen
    Haus, Utz-Uwe
    Theis, Fabian
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (05)