Tailored enrichment strategy detects low abundant small noncoding RNAs in HIV-1 infected cells

被引:32
作者
Althaus, Claudia F. [1 ]
Vongrad, Valentina [1 ]
Niederoest, Barbara [1 ]
Joos, Beda [1 ]
Di Giallonardo, Francesca [1 ]
Rieder, Philip [1 ]
Pavlovic, Jovan [2 ]
Trkola, Alexandra [2 ]
Guenthard, Huldrych F. [1 ]
Metzner, Karin J. [1 ]
Fischer, Marek [1 ]
机构
[1] Univ Zurich, Univ Zurich Hosp, Div Infect Dis & Hosp Epidemiol, CH-8091 Zurich, Switzerland
[2] Univ Zurich, Inst Med Virol, CH-8091 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
HIV-1; Small noncoding RNA; Antisense RNA; Hybridization capture; DOUBLE-STRANDED-RNA; ANTIRETROVIRAL THERAPY; HIV-1; MICRORNAS; VIRUS; IDENTIFICATION; INTERFERENCE; EXPRESSION; TRANSCRIPTS; MECHANISMS;
D O I
10.1186/1742-4690-9-27
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: The various classes of small noncoding RNAs (sncRNAs) are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels. This is best illustrated by HIV-1 where virus encoded sncRNAs represent approximately 0.1-1.0% of all sncRNAs in HIV-1 infected cells or were found to be undetected. Thus, we applied a novel, sequence targeted enrichment strategy to capture HIV-1 derived sncRNAs in HIV-1 infected primary CD4(+) T-lymphocytes and macrophages that allows a greater than 100-fold enrichment of low abundant sncRNAs. Results: Eight hundred and ninety-two individual HIV-1 sncRNAs were cloned and sequenced from nine different sncRNA libraries derived from five independent experiments. These clones represent up to 90% of all sncRNA clones in the generated libraries. Two hundred and sixteen HIV-1 sncRNAs were distinguishable as unique clones. They are spread throughout the HIV-1 genome, however, forming certain clusters, and almost 10% show an antisense orientation. The length of HIV-1 sncRNAs varies between 16 and 89 nucleotides with an unexpected peak at 31 to 50 nucleotides, thus, longer than cellular microRNAs or short-interfering RNAs (siRNAs). Exemplary HIV-1 sncRNAs were also generated in cells infected with different primary HIV-1 isolates and can inhibit HIV-1 replication. Conclusions: HIV-1 infected cells generate virally encoded sncRNAs, which might play a role in the HIV-1 life cycle. Furthermore, the enormous capacity to enrich low abundance sncRNAs in a sequence specific manner highly recommends our selection strategy for any type of investigation where origin or target sequences of the sought-after sncRNAs are known.
引用
收藏
页数:13
相关论文
共 47 条
[21]   Detection, characterization and regulation of antisense transcripts in HIV-I [J].
Landry, Sebastien ;
Halin, Marilene ;
Lefort, Sylvain ;
Audet, Brigitte ;
Vaquero, Catherine ;
Mesnard, Jean-Michel ;
Barbeau, Benoit .
RETROVIROLOGY, 2007, 4
[22]   Analysis of HIV-1 Expression Level and Sense of Transcription by High-Throughput Sequencing of the Infected Cell [J].
Lefebvre, Gregory ;
Desfarges, Sebastien ;
Uyttebroeck, Frederic ;
Munoz, Miguel ;
Beerenwinkel, Niko ;
Rougemont, Jacques ;
Telenti, Amalio ;
Ciuffi, Angela .
JOURNAL OF VIROLOGY, 2011, 85 (13) :6205-6211
[23]   Transcriptional interference antagonizes proviral gene expression to promote HIV latency [J].
Lenasi, Tina ;
Contreras, Xavier ;
Peterlin, B. Matija .
CELL HOST & MICROBE, 2008, 4 (02) :123-133
[24]   Analysis of the interaction of primate retroviruses with the human RNA interference machinery [J].
Lin, Jennifer ;
Cullen, Bryan R. .
JOURNAL OF VIROLOGY, 2007, 81 (22) :12218-12226
[25]   Elucidation of the small RNA component of the transcriptome [J].
Lu, C ;
Tej, SS ;
Luo, SJ ;
Haudenschild, CD ;
Meyers, BC ;
Green, PJ .
SCIENCE, 2005, 309 (5740) :1567-1569
[26]   Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products [J].
Ludwig, Linda B. ;
Ambrus, Julian L., Jr. ;
Krawczyk, Kristie A. ;
Sharma, Sanjay ;
Brooks, Stephen ;
Hsiao, Chiu-Bin ;
Schwartz, Stanley A. .
RETROVIROLOGY, 2006, 3 (1)
[27]   Target-enrichment strategies for next-generation sequencing [J].
Mamanova, Lira ;
Coffey, Alison J. ;
Scott, Carol E. ;
Kozarewa, Iwanka ;
Turner, Emily H. ;
Kumar, Akash ;
Howard, Eleanor ;
Shendure, Jay ;
Turner, Daniel J. .
NATURE METHODS, 2010, 7 (02) :111-118
[28]   NEGATIVE-STRAND RNA TRANSCRIPTS ARE PRODUCED IN HUMAN-IMMUNODEFICIENCY-VIRUS TYPE 1-INFECTED CELLS AND PATIENTS BY A NOVEL PROMOTER DOWN-REGULATED BY TAT [J].
MICHAEL, NL ;
VAHEY, MT ;
DARCY, L ;
EHRENBERG, PK ;
MOSCA, JD ;
RAPPAPORT, J ;
REDFIELD, RR .
JOURNAL OF VIROLOGY, 1994, 68 (02) :979-987
[29]   DISSOCIATION OF GP120 FROM HIV-1 VIRIONS INDUCED BY SOLUBLE CD4 [J].
MOORE, JP ;
MCKEATING, JA ;
WEISS, RA ;
SATTENTAU, QJ .
SCIENCE, 1990, 250 (4984) :1139-1142
[30]   Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells [J].
Mrazek, Jan ;
Kreutmayer, Simone B. ;
Graesser, Friedrich A. ;
Polacek, Norbert ;
Huettenhofer, Alexander .
NUCLEIC ACIDS RESEARCH, 2007, 35 (10)