Approximate mining of maximal frequent itemsets in data streams with different window models

被引:10
作者
Li, Hua-Fu [1 ]
Lee, Suh-Yin [2 ]
机构
[1] Kainan Univ, Dept Comp Sci, Tao Yuan 338, Taiwan
[2] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
data mining; data streams; maximal frequent itemsets; one-pass mining; approximate mining;
D O I
10.1016/j.eswa.2007.07.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A data stream is a massive, open-ended sequence of data elements continuously generated at a rapid rate. Mining data streams is more difficult than mining static databases because the huge, high-speed and continuous characteristics of streaming data. In this paper, we propose a new one-pass algorithm called DSM-MFI (stands for Data Stream Mining for Maximal Frequent Itemsets), which mines the set of all maximal frequent itemsets in landmark windows over data streams. A new summary data structure called summary frequent itemset forest (abbreviated as SFI-forest) is developed for incremental maintaining the essential information about maximal frequent itemsets embedded in the stream so far. Theoretical analysis and experimental studies show that the proposed algorithm is efficient and scalable for mining the set of all maximal frequent itemsets over the entire history of the data streams. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:781 / 789
页数:9
相关论文
共 23 条
[1]  
AGGARWAL CC, 2003, P 29 LDB C
[2]  
AGGARWAL CC, 2003, ACM SIGMOD
[3]  
AGRAWAL R, 1994, C 20 VLDB C, P487
[4]  
BABCOCK B, 2002, P 2002 ACM S PRINC D
[5]  
Bayardo R, 1998, ACM SIGMOD C
[6]  
BURDICK D, 2001, INT C DAT ENG APR
[7]  
CHANG JH, 2005, J INFORM SCI JIS, V31
[8]  
CHEN Y, 2002, P 2002 INT C VER LAR
[9]  
DOMINGOS P, 2000, P ACM C KNOWL DAT DI
[10]  
Dong G., 2003, P 2003 ACM SIGMOD WO