Effects of graphene on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on D16T Al alloy

被引:52
作者
Liu, Wanying [1 ,2 ,3 ]
Liu, Ying [1 ]
Lin, Yuanhua [2 ,4 ]
Zhang, Zhi [4 ]
Feng, Shaobo [5 ]
Talha, Mohd [2 ]
Shi, Yunsheng [2 ]
Shi, Taihe [4 ]
机构
[1] Sichuan Univ, Sch Mat Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Southwest Petr Univ, Sch Mat Sci & Engn, Chengdu 610500, Sichuan, Peoples R China
[3] Helmholtz Zentrtun Geesthacht, Inst Mat Res, Max Plank Str 1, D-21502 Geesthacht, Germany
[4] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
[5] PetroChina Tarim Oilfield Co, Nat Gas Dept, Korla 841000, Xinjiang, Peoples R China
基金
美国国家科学基金会;
关键词
Aluminum alloy; Plasma electrolytic oxidation; EIS; SKP; Corrosion; MICROARC OXIDATION; CERAMIC COATINGS; COMPOSITE COATINGS; CURRENT-DENSITY; OXIDE LAYER; BEHAVIOR; MICROSTRUCTURE; PERFORMANCE; NANOPARTICLES; TRANSPARENCY;
D O I
10.1016/j.apsusc.2018.12.233
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasma electrolytic oxidation (PEO) coatings were fabricated on D16T Al alloy in the silicate electrolyte with and without graphene. The microstructure, phase composition, elemental distribution, micro-hardness, thickness and corrosion resistance of PEO coatings were investigated. Results showed that PEO coatings formed in the electrolyte with graphene exhibited unexceptionable corrosion resistance because incorporated graphene made PEO coatings flatter, denser, compacter and harder. Graphene successfully embedded into PEO coatings remarkedly decreased micropores and microcracks of the PEO coating, and significantly enhanced the corrosion resistance of the PEO coating produced on D16T Al alloy due to its physical separation.
引用
收藏
页码:645 / 659
页数:15
相关论文
共 70 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings [J].
Barik, RC ;
Wharton, JA ;
Wood, RJK ;
Stokes, KR ;
Jones, RL .
SURFACE & COATINGS TECHNOLOGY, 2005, 199 (2-3) :158-167
[3]  
Belevantsev VI, 1998, PROT MET+, V34, P416
[4]   Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3 [J].
Cabral, A ;
Duarte, RG ;
Montemor, MF ;
Zheludkevich, ML ;
Ferreira, MGS .
CORROSION SCIENCE, 2005, 47 (03) :869-881
[5]   Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces [J].
Chen, Shougang ;
Chen, Yan ;
Lei, Yanhua ;
Yin, Yansheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) :1675-1679
[6]   Combined Galvanostatic and Potentiostatic Plasma Electrolytic Oxidation of Titanium in Different Concentrations of H2SO4 [J].
Engelkamp, Bernd ;
El Achhab, Mhamed ;
Fischer, Bjoern ;
Koekcam-Demir, Uelkue ;
Schierbaum, Klaus .
METALS, 2018, 8 (06)
[7]  
Erokhine A., 1986, US Patent, Patent No. 5720866
[8]   Dual incorporation of SiO2 and ZrO2 nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties [J].
Fatimah, S. ;
Kamil, M. P. ;
Kwon, J. H. ;
Kaseem, M. ;
Ko, Y. G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 707 :358-364
[9]   Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress [J].
Figueira, R. B. ;
Silva, C. J. R. ;
Pereira, E. V. .
JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2015, 12 (01) :1-35
[10]  
GArg Pulkit., 2016, J. Mater. Environ. Sci, V7, P1461