Equilibria of biological aggregations with nonlocal repulsive-attractive interactions

被引:43
作者
Fetecau, R. C. [1 ]
Huang, Y. [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Swarm equilibria; Biological aggregations; Newtonian potential; Global attractors; R-N; BLOW-UP; EQUATIONS; MODELS; DYNAMICS; SWARM;
D O I
10.1016/j.physd.2012.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the aggregation equation rho(t) - del . (rho del K (*) rho) = 0 in R-n, where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R-n. By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 38 条
[31]  
Majda A, 2002, CAMBRIDGE TEXTS APPL, V27
[32]   Global solutions to vortex density equations arising from sup-conductivity [J].
Masmoudi, N ;
Zhang, P .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (04) :441-458
[33]   A non-local model for a swarm [J].
Mogilner, A ;
Edelstein-Keshet, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) :534-570
[34]   A nonlocal continuum model for biological aggregation [J].
Topaz, Chad M. ;
Bertozzi, Andrea L. ;
Lewis, Mark A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (07) :1601-1623
[35]   Swarming patterns in a two-dimensional kinematic model for biological groups [J].
Topaz, CM ;
Bertozzi, AL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) :152-174
[36]   One-dimensional kinetic models of granular flows [J].
Toscani, G .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (06) :1277-1291
[37]  
Vainikko G., 1993, Multidimensional weakly singular integral equations, V1549
[38]   PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS [J].
Von Brecht, James H. ;
Uminsky, David ;
Kolokolnikov, Theodore ;
Bertozzi, Andrea L. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22