Equilibria of biological aggregations with nonlocal repulsive-attractive interactions

被引:43
作者
Fetecau, R. C. [1 ]
Huang, Y. [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Swarm equilibria; Biological aggregations; Newtonian potential; Global attractors; R-N; BLOW-UP; EQUATIONS; MODELS; DYNAMICS; SWARM;
D O I
10.1016/j.physd.2012.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the aggregation equation rho(t) - del . (rho del K (*) rho) = 0 in R-n, where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R-n. By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 38 条
  • [21] Swarm dynamics and equilibria for a nonlocal aggregation model
    Fetecau, R. C.
    Huang, Y.
    Kolokolnikov, T.
    [J]. NONLINEARITY, 2011, 24 (10) : 2681 - 2716
  • [22] SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE
    GIDAS, B
    NI, WM
    NIRENBERG, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) : 209 - 243
  • [23] Golub G., 2013, J HOPKINS STUDIES MA
  • [24] Haile J. M., 1992, MOL DYNAMICS SIMULAT
  • [25] Formation of clumps and patches in self-aggregation of finite-size particles
    Holm, Darryl D.
    Putkaradze, Vakhtang
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (02) : 183 - 196
  • [26] Aggregation of finite-size particles with variable mobility
    Holm, DD
    Putkaradze, V
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [27] SELF-SIMILAR BLOWUP SOLUTIONS TO AN AGGREGATION EQUATION IN Rn
    Huang, Yanghong
    Bertozzi, Andrea L.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) : 2582 - 2603
  • [28] Stability of ring patterns arising from two-dimensional particle interactions
    Kolokolnikov, Theodore
    Sun, Hui
    Uminsky, David
    Bertozzi, Andrea L.
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):
  • [29] Asymptotic Dynamics of Attractive-Repulsive Swarms
    Leverentz, Andrew J.
    Topaz, Chad M.
    Berno, Andrew J.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03): : 880 - 908
  • [30] Li D, 2009, COMMUN MATH PHYS, V287, P687, DOI 10.1007/s00220-008-0669-0