Equilibria of biological aggregations with nonlocal repulsive-attractive interactions

被引:43
作者
Fetecau, R. C. [1 ]
Huang, Y. [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Swarm equilibria; Biological aggregations; Newtonian potential; Global attractors; R-N; BLOW-UP; EQUATIONS; MODELS; DYNAMICS; SWARM;
D O I
10.1016/j.physd.2012.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the aggregation equation rho(t) - del . (rho del K (*) rho) = 0 in R-n, where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R-n. By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 38 条
  • [1] [Anonymous], 1994, PHYS REV B, V50, P1126
  • [2] [Anonymous], 2006, Maximum principles and applications
  • [3] Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 260 : 5 - 25
  • [4] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [5] A Primer of Swarm Equilibria
    Bernoff, Andrew J.
    Topaz, Chad M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01): : 212 - 250
  • [6] Finite-time blow-up of solutions of an aggregation equation in Rn
    Bertozzi, Andrea L.
    Laurent, Thomas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) : 717 - 735
  • [7] CHARACTERIZATION OF RADIALLY SYMMETRIC FINITE TIME BLOWUP IN MULTIDIMENSIONAL AGGREGATION EQUATIONS
    Bertozzi, Andrea L.
    Garnett, John B.
    Laurent, Thomas
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 651 - 681
  • [8] AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS
    Bertozzi, Andrea L.
    Laurent, Thomas
    Leger, Flavien
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
  • [9] Lp Theory for the Multidimensional Aggregation Equation
    Bertozzi, Andrea L.
    Laurent, Thomas
    Rosado, Jesus
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) : 45 - 83
  • [10] Blow-up in multidimensional aggregation equations with mildly singular interaction kernels
    Bertozzi, Andrea L.
    Carrillo, Jose A.
    Laurent, Thomas
    [J]. NONLINEARITY, 2009, 22 (03) : 683 - 710