A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine

被引:186
|
作者
Wang, Deyun [1 ,2 ,3 ]
Wei, Shuai [1 ,2 ]
Luo, Hongyuan [1 ,2 ]
Yue, Chenqiang [1 ,2 ]
Grunder, Olivier [3 ]
机构
[1] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Mineral Resource Strategy & Policy Res Ctr, Wuhan 430074, Peoples R China
[3] Univ Bourgogne Franche Comte, UTBM, IRTES, Rue Thierry Mieg, F-90010 Belfort, France
基金
中国国家自然科学基金;
关键词
Air quality index (AQI); Complementary ensemble empirical mode decomposition (CEEMD); Variational mode decomposition (VMD); Differential evolution (DE); Extreme learning machine (ELM); ARTIFICIAL NEURAL-NETWORKS; HIDDEN MARKOV MODEL; PARTICULATE MATTER; ENSEMBLE MODEL; PM2.5; PREDICTION; REGRESSION; ARIMA;
D O I
10.1016/j.scitotenv.2016.12.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 733
页数:15
相关论文
共 50 条
  • [31] Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting
    Majumder, Irani
    Dash, P. K.
    Bisoi, Ranjeeta
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 787 - 806
  • [33] A Novel Hybrid Model Based on Deep Learning and Autoregressive for Air Quality Prediction
    Wang, Can
    Zhu, Minghua
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [34] Combining two-stage decomposition based machine learning methods for annual runoff forecasting
    Chen, Shu
    Ren, Miaomiao
    Sun, Wei
    JOURNAL OF HYDROLOGY, 2021, 603
  • [35] Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction
    Wang, Weijun
    Tang, Qing
    ENVIRONMENTAL POLLUTION, 2023, 316
  • [36] A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
    Niu, Mingfei
    Wang, Yufang
    Sun, Shaolong
    Li, Yongwu
    ATMOSPHERIC ENVIRONMENT, 2016, 134 : 168 - 180
  • [37] Hybrid Multivariate Machine Learning Models for Streamflow Forecasting: A Two-Stage Decomposition-Reconstruction Framework
    Jin, Aohan
    Wang, Quanrong
    Zhou, Renjie
    Shi, Wenguang
    Qiao, Xiangyu
    JOURNAL OF HYDROLOGIC ENGINEERING, 2024, 29 (05)
  • [38] A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
    Wenqing Yu
    Xingju Wang
    Xin Jiang
    Ranhang Zhao
    Shen Zhao
    Environmental Science and Pollution Research, 2024, 31 : 262 - 279
  • [39] A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
    Yu, Wenqing
    Wang, Xingju
    Jiang, Xin
    Zhao, Ranhang
    Zhao, Shen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 406 - 421
  • [40] A novel hybrid short-term electricity forecasting technique for residential loads using Empirical Mode Decomposition and Extreme Learning Machines
    Sulaiman, S. M.
    Jeyanthy, P. Aruna
    Devaraj, D.
    Shihabudheen, K., V
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 98