Improved survival analysis by learning shared genomic information from pan-cancer data

被引:36
|
作者
Kim, Sunkyu [1 ]
Kim, Keonwoo [1 ]
Choe, Junseok [1 ]
Lee, Inggeol [1 ]
Kang, Jaewoo [1 ,2 ]
机构
[1] Korea Univ, Coll Informat, Dept Comp Sci & Engn, Seoul 02841, South Korea
[2] Korea Univ, Coll Informat, Interdisciplinary Grad Program Bioinformat, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
PROGNOSTIC MARKER;
D O I
10.1093/bioinformatics/btaa462
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent advances in deep learning have offered solutions to many biomedical tasks. However, there remains a challenge in applying deep learning to survival analysis using human cancer transcriptome data. As the number of genes, the input variables of survival model, is larger than the amount of available cancer patient samples, deep-learning models are prone to overfitting. To address the issue, we introduce a new deep-learning architecture called VAECox. VAECox uses transfer learning and fine tuning. Results: We pre-trained a variational autoencoder on all RNA-seq data in 20 TCGA datasets and transferred the trained weights to our survival prediction model. Then we fine-tuned the transferred weights during training the survival model on each dataset. Results show that our model outperformed other previous models such as Cox Proportional Hazard with LASSO and ridge penalty and Cox-nnet on the 7 of 10 TCGA datasets in terms of C-index. The results signify that the transferred information obtained from entire cancer transcriptome data helped our survival prediction model reduce overfitting and show robust performance in unseen cancer patient samples.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [1] Pan-cancer splicing analysis reveals shared drivers of malignant transformation and survival
    Bhattacharjee, Anukana
    Crowther, Audrey
    Li, Guangyuan
    Venkatasubramanian, Meenakshi
    Schnell, Dan
    Hay, Stuart
    Singh, Preeti
    Subramanian, Krithika R.
    Chetal, Kashish
    Chen, Xiaoting
    Kulkarni, Aishwarya
    Weirauch, Matthew T.
    Salomonis, Nathan
    CANCER RESEARCH, 2023, 83 (07)
  • [2] A pan-cancer analysis framework for incorporating gene expression information into clinical interpretation of pediatric cancer genomic data
    Morozova, Olena
    Newton, Yulia
    Shah, Avanthi Tayi
    Beale, Holly
    Lam, Du Linh
    Vivian, John
    Bjork, Isabel
    Goldstein, Theodore
    Stuart, Josh
    Salama, Sofie
    Sweet-Cordero, E. Alejandro
    Haussler, David
    CANCER RESEARCH, 2017, 77
  • [3] Pan-Cancer Analysis of the Genomic Alterations and Mutations of the Matrisome
    Izzi, Valerio
    Davis, Martin N.
    Naba, Alexandra
    CANCERS, 2020, 12 (08) : 1 - 21
  • [4] Pan-Cancer Analysis of Genomic Sequencing Among the Elderly
    Wahl, Daniel R.
    Nguyen, Paul L.
    Santiago, Maria
    Yousefi, Kasra
    Davicioni, Elai
    Shumway, Dean A.
    Speers, Corey
    Mehra, Rohit
    Feng, Felix Y.
    Osborne, Joseph R.
    Spratt, Daniel E.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 98 (04): : 726 - 732
  • [5] Pan-cancer integrative histology-genomic analysis via multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Lipkova, Jana
    Noor, Zahra
    Shaban, Muhammad
    Shady, Maha
    Williams, Mane
    Joo, Bumjin
    Mahmood, Faisal
    CANCER CELL, 2022, 40 (08) : 865 - +
  • [6] Sex Differences in Cancer Incidence and Survival A Pan-Cancer Analysis
    Dong, Michelle
    Cioffi, Gino
    Wang, Jacqueline
    Waite, Kristin A.
    Ostrom, Quinn T.
    Kruchko, Carol
    Lathia, Justin D.
    Rubin, Joshua B.
    Berens, Michael E.
    Connor, James
    Barnholtz-Sloan, Jill S.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (07) : 1389 - 1397
  • [7] Proteogenomic data and resources for pan-cancer analysis
    Li, Yize
    Dou, Yongchao
    Leprevost, Felipe Da Veiga
    Geffen, Yifat
    Calinawan, Anna P.
    Akiyama, Yo
    Anand, Shankara
    Birger, Chet
    Cao, Song
    Chaudhary, Rekha
    Chilappagari, Padmini
    Cieslik, Marcin
    Colaprico, Antonio
    Zhou, Daniel Cui
    Day, Corbin
    Domagalski, Marcin J.
    Aguet, Francois
    Fenyo, David
    Selvan, Myvizhi Esai
    Foltz, Steven M.
    Francis, Alicia
    Gonzalez-Robles, Tania
    Euromueuros, Zeynep H.
    Heiman, David
    Holck, Michael
    Hong, Runyu
    Hu, Yingwei
    Jaehnig, Eric J.
    Ji, Jiayi
    Jiang, Wen
    Katsnelson, Lizabeth
    Ketchum, Karen A.
    Klein, Robert J.
    Lei, Jonathan T.
    Liang, Wen-Wei
    Liao, Yuxing
    Lindgren, Caleb M.
    Ma, Weiping
    Ma, Lei
    Maccoss, Michael J.
    Rodrigues, Fernanda Martins
    Mckerrow, Wilson
    Nguyen, Ngoc
    Oldroyd, Robert
    Pilozzi, Alexander
    Pugliese, Pietro
    Reva, Boris
    Rudnick, Paul
    Ruggles, Kelly V.
    Rykunov, Dmitry
    CANCER CELL, 2023, 41 (08) : 1397 - 1406
  • [8] A Novel Attention-Mechanism Based Cox Survival Model by Exploiting Pan-Cancer Empirical Genomic Information
    Meng, Xiangyu
    Wang, Xun
    Zhang, Xudong
    Zhang, Chaogang
    Zhang, Zhiyuan
    Zhang, Kuijie
    Wang, Shudong
    CELLS, 2022, 11 (09)
  • [9] MutEx: a multifaceted gateway for exploring integrative pan-cancer genomic data
    Ping, Jie
    Oyebamiji, Olufunmilola
    Yu, Hui
    Ness, Scott
    Chien, Jeremy
    Ye, Fei
    Kang, Huining
    Samuels, David
    Ivanov, Sergey
    Chen, Danqian
    Zhao, Ying-Yong
    Guo, Yan
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1479 - 1486
  • [10] A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis
    White, Brian S.
    Woo, Xing Yi
    Koc, Soner
    Sheridan, Todd
    Neuhauser, Steven B.
    Wang, Shidan
    Evrard, Yvonne A.
    Landua, John David
    Mashl, R. Jay
    Davies, Sherri R.
    Fang, Bingliang
    Raso, Maria Gabriela
    Evans, Kurt W.
    Bailey, Matthew H.
    Chen, Yeqing
    Xiao, Min
    Rubinstein, Jill
    Pour, Ali Foroughi
    Dobrolecki, Lacey Elizabeth
    Fujita, Maihi
    Fujimoto, Junya
    Xiao, Guanghua
    Fields, Ryan C.
    Mudd, Jacqueline L.
    Xu, Xiaowei
    Hollingshead, Melinda G.
    Jiwani, Shahanawaz
    Consortium, Pdxnet
    Wallace, Tiffany A.
    Moscow, Jeffrey A.
    Doroshow, James H.
    Mitsiades, Nicholas
    Kaochar, Salma
    Pan, Chong-Xian
    Chen, Moon S.
    Carvajal-Carmona, Luis G.
    Welm, Alana L.
    Welm, Bryan E.
    Govindan, Ramaswamy
    Li, Shunqiang
    Davies, Michael A.
    Roth, Jack A.
    Meric-Bernstam, Funda
    Xie, Yang
    Herlyn, Meenhard
    Ding, Li
    Lewis, Michael T.
    Bolt, Carol J.
    Dean, Dennis A.
    Chuang, Jeffrey H.
    CANCER RESEARCH, 2023, 83 (07)