Heading Direction Estimation Using Deep Learning with Automatic Large-scale Data Acquisition

被引:0
作者
Berriel, Rodrigo E. [1 ]
Tones, Lucas Tabelini [1 ]
Cardoso, Vinicius B. [1 ]
Guidolini, Ranik [1 ]
Badue, Claudine [1 ]
De Souza, Alberto F. [1 ]
Oliveira-Santos, Thiago [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Informat, Vitoria, ES, Brazil
来源
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2018年
关键词
Deep Learning; Heading Estimation; Convolutional Neural Networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advanced Driver Assistance Systems (ADAS) have experienced major advances in the past few years. The main objective of ADAS includes keeping the vehicle in the correct road direction, and avoiding collision with other vehicles or obstacles around. In this paper, we address the problem of estimating the heading direction that keeps the vehicle aligned with the road direction. This information can be used in precise localization, road and lane keeping, lane departure warning, and others. To enable this approach, a large-scale database (+1 million images) was automatically acquired and annotated using publicly available platforms such as the Google Street View API and OpenStreetMap. After the acquisition of the database, a CNN model was trained to predict how much the heading direction of a car should change in order to align it to the road 4 meters ahead. To assess the performance of the model, experiments were performed using images from two different sources: a hidden test set from Google Street View (GSV) images and two datasets from our autonomous car (IARA). The model achieved a low mean average error of 2.359 degrees and 2.524 degrees for the GSV and IARA datasets, respectively; performing consistently across the different datasets. It is worth noting that the images from the IARA dataset are very different (camera, FOV, brightness, etc.) from the ones of the GSV dataset, which shows the robustness of the model. In conclusion, the model was trained effortlessly (using automatic processes) and showed promising results in real-world databases working in real-time (more than 75 frames per second).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Using Deep Learning to Formulate the Landslide Rainfall Threshold of the Potential Large-Scale Landslide
    Chiang, Jie-Lun
    Kuo, Chia-Ming
    Fazeldehkordi, Leila
    WATER, 2022, 14 (20)
  • [42] Large-scale prediction of stream water quality using an interpretable deep learning approach
    Zheng, Hang
    Liu, Yueyi
    Wan, Wenhua
    Zhao, Jianshi
    Xie, Guanti
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 331
  • [43] Large-scale semantic web image retrieval using bimodal deep learning techniques
    Huang, Changqin
    Xu, Haijiao
    Xie, Liang
    Zhu, Jia
    Xu, Chunyan
    Tang, Yong
    INFORMATION SCIENCES, 2018, 430 : 331 - 348
  • [44] Learning to Train and to Explain a Deep Survival Model with Large-Scale Ovarian Cancer Transcriptomic Data
    Menand, Elena Spirina
    De Vries-Brilland, Manon
    Tessier, Leslie
    Dauve, Jonathan
    Campone, Mario
    Verriele, Veronique
    Jrad, Nisrine
    Marion, Jean-Marie
    Chauvet, Pierre
    Passot, Christophe
    Morel, Alain
    BIOMEDICINES, 2024, 12 (12)
  • [45] Direction of arrival estimation in multipath environments using deep learning
    Harkouss, Youssef
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (11)
  • [46] Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows
    Singh, Alok
    Altintas, Ilkay
    Stephan, Eric
    Schram, Malachi
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 586 - 591
  • [47] Large-Scale Deep Learning for Building Intelligent Computer Systems
    Dean, Jeff
    PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), 2016, : 1 - 1
  • [48] Automated curation of large-scale cancer histopathology image datasets using deep learning
    Hilgers, Lars
    Laleh, Narmin Ghaffari
    West, Nicholas P.
    Westwood, Alice
    Hewitt, Katherine J.
    Quirke, Philip
    Grabsch, Heike, I
    Carrero, Zunamys, I
    Matthaei, Emylou
    Loeffler, Chiara M. L.
    Brinker, Titus J.
    Yuan, Tanwei
    Brenner, Hermann
    Brobeil, Alexander
    Hoffmeister, Michael
    Kather, Jakob Nikolas
    HISTOPATHOLOGY, 2024, 84 (07) : 1139 - 1153
  • [49] Deep Learning Hyperspectral Pansharpening on Large-Scale PRISMA Dataset
    Zini, Simone
    Barbato, Mirko Paolo
    Piccoli, Flavio
    Napoletano, Paolo
    REMOTE SENSING, 2024, 16 (12)
  • [50] Hybrid Beamforming With Deep Learning for Large-Scale Antenna Arrays
    Hu, Rentao
    Jiang, Lijun
    Li, Ping
    IEEE ACCESS, 2021, 9 : 54690 - 54699