Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy

被引:62
|
作者
Zoldak, Gabriel [1 ]
Stigler, Johannes [1 ]
Pelz, Benjamin [1 ]
Li, Hongbin [2 ]
Rief, Matthias [1 ,3 ]
机构
[1] Tech Univ Munich, Phys Dept E22, D-85748 Garching, Germany
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[3] Munich Ctr Integrated Prot Sci, D-81377 Munich, Germany
关键词
optical trapping; thermodynamics; Markov model; Chevron plot; Langevin equation; FLUORESCENCE CORRELATION SPECTROSCOPY; CRYSTAL-STRUCTURES; PROTEIN MOLECULE; VIBRATIONAL ECHO; SUBDOMAIN; SIMULATION; DYNAMICS; STABILITY; PATHWAYS; TRAJECTORIES;
D O I
10.1073/pnas.1311495110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study we expand the accessible dynamic range of single-molecule force spectroscopy by optical tweezers to the microsecond range by fast sampling. We are able to investigate a single molecule for up to 15 min and with 300-kHz bandwidth as the protein undergoes tens of millions of folding/unfolding transitions. Using equilibrium analysis and autocorrelation analysis of the time traces, the full energetics as well as real-time kinetics of the ultrafast folding of villin headpiece 35 and a stable asparagine 68 alanine/lysine 70 methionine variant can be measured directly. We also performed Brownian dynamics simulations of the response of the bead-DNA system to protein-folding fluctuations. All key features of the force-dependent deflection fluctuations could be reproduced: SD, skewness, and autocorrelation function. Our measurements reveal a difference in folding pathway and cooperativity between wild-type and stable variant of headpiece 35. Autocorrelation force spectroscopy pushes the time resolution of single-molecule force spectroscopy to similar to 10 mu s thus approaching the timescales accessible for all atom molecular dynamics simulations.
引用
收藏
页码:18156 / 18161
页数:6
相关论文
共 50 条
  • [11] Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy
    Kuo, Tzu-Ling
    Garcia-Manyes, Sergi
    Li, Jingyuan
    Barel, Itay
    Lu, Hui
    Berne, Bruce J.
    Urbakh, Michael
    Klafter, Joseph
    Fernandez, Julio M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (25) : 11336 - 11340
  • [12] On artifacts in single-molecule force spectroscopy
    Cossio, Pilar
    Hummer, Gerhard
    Szabo, Attila
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) : 14248 - 14253
  • [13] Rate-dependent force-extension models for single-molecule force spectroscopy experiments
    Benedito, Manon
    Manca, Fabio
    Palla, Pier Luca
    Giordano, Stefano
    PHYSICAL BIOLOGY, 2020, 17 (05)
  • [14] Transition paths in single-molecule force spectroscopy
    Cossio, Pilar
    Hummer, Gerhard
    Szabo, Attila
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (12)
  • [15] Reversible bond kinetics from single-molecule force spectroscopy experiments close to equilibrium
    Bullerjahn, Jakob Tomas
    Hummer, Gerhard
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [16] Single-molecule Force Spectroscopy Approach to Enzyme Catalysis
    Alegre-Cebollada, Jorge
    Perez-Jimenez, Raul
    Kosuri, Pallav
    Fernandez, Julio M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (25) : 18961 - 18966
  • [17] Shapes of dominant transition paths from single-molecule force spectroscopy
    Makarov, Dmitrii E.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (19)
  • [18] Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins
    Thoma, Johannes
    Sapra, K. Tanuj
    Muller, Daniel J.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 11, 2018, 11 : 375 - 395
  • [19] Association Kinetics from Single Molecule Force Spectroscopy Measurements
    Guo, Senli
    Lad, Nimit
    Ray, Chad
    Akhremitchev, Boris B.
    BIOPHYSICAL JOURNAL, 2009, 96 (08) : 3412 - 3422
  • [20] Force-conductance spectroscopy of a single-molecule reaction
    Mejia, Leopoldo
    Franco, Ignacio
    CHEMICAL SCIENCE, 2019, 10 (11) : 3249 - 3256