Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy

被引:62
|
作者
Zoldak, Gabriel [1 ]
Stigler, Johannes [1 ]
Pelz, Benjamin [1 ]
Li, Hongbin [2 ]
Rief, Matthias [1 ,3 ]
机构
[1] Tech Univ Munich, Phys Dept E22, D-85748 Garching, Germany
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[3] Munich Ctr Integrated Prot Sci, D-81377 Munich, Germany
关键词
optical trapping; thermodynamics; Markov model; Chevron plot; Langevin equation; FLUORESCENCE CORRELATION SPECTROSCOPY; CRYSTAL-STRUCTURES; PROTEIN MOLECULE; VIBRATIONAL ECHO; SUBDOMAIN; SIMULATION; DYNAMICS; STABILITY; PATHWAYS; TRAJECTORIES;
D O I
10.1073/pnas.1311495110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study we expand the accessible dynamic range of single-molecule force spectroscopy by optical tweezers to the microsecond range by fast sampling. We are able to investigate a single molecule for up to 15 min and with 300-kHz bandwidth as the protein undergoes tens of millions of folding/unfolding transitions. Using equilibrium analysis and autocorrelation analysis of the time traces, the full energetics as well as real-time kinetics of the ultrafast folding of villin headpiece 35 and a stable asparagine 68 alanine/lysine 70 methionine variant can be measured directly. We also performed Brownian dynamics simulations of the response of the bead-DNA system to protein-folding fluctuations. All key features of the force-dependent deflection fluctuations could be reproduced: SD, skewness, and autocorrelation function. Our measurements reveal a difference in folding pathway and cooperativity between wild-type and stable variant of headpiece 35. Autocorrelation force spectroscopy pushes the time resolution of single-molecule force spectroscopy to similar to 10 mu s thus approaching the timescales accessible for all atom molecular dynamics simulations.
引用
收藏
页码:18156 / 18161
页数:6
相关论文
共 50 条
  • [1] Measuring "Unmeasurable" Folding Kinetics of Proteins by Single-Molecule Force Spectroscopy
    Jollymore, Ashlee
    Li, Hongbin
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 402 (03) : 610 - 617
  • [2] Single-Molecule Force Spectroscopy of Protein Folding
    Petrosyan, Rafayel
    Narayan, Abhishek
    Woodside, Michael T.
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (20)
  • [3] Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy
    Woodside, Michael T.
    Block, Steven M.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 43, 2014, 43 : 19 - 39
  • [4] Quantifying Instrumental Artifacts in Folding Kinetics Measured by Single-Molecule Force Spectroscopy
    Neupane, Krishna
    Woodside, Michael T.
    BIOPHYSICAL JOURNAL, 2016, 111 (02) : 283 - 286
  • [5] Single-Molecule Force Spectroscopy of Membrane Protein Folding
    Wijesinghe, W. C. Bhashini
    Min, Duyoung
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (11)
  • [6] Single-molecule spectroscopy of protein folding in a chaperonin cage
    Hofmann, Hagen
    Hillger, Frank
    Pfeil, Shawn H.
    Hoffmann, Armin
    Streich, Daniel
    Haenni, Dominik
    Nettels, Daniel
    Lipman, Everett A.
    Schuler, Benjamin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (26) : 11793 - 11798
  • [7] Memory effects in single-molecule force spectroscopy measurements of biomolecular folding
    Pyo, Andrew G. T.
    Woodside, Michael T.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (44) : 24527 - 24534
  • [8] Quantifying the Chain Folding in Polymer Single Crystals by Single-Molecule Force Spectroscopy
    Ma, Ziwen
    Yang, Peng
    Zhang, Xiaoye
    Jiang, Ke
    Song, Yu
    Zhang, Wenke
    ACS MACRO LETTERS, 2019, 8 (09) : 1194 - 1199
  • [9] Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein
    Pirchi, Menahem
    Ziv, Guy
    Riven, Inbal
    Cohen, Sharona Sedghani
    Zohar, Nir
    Barak, Yoav
    Haran, Gilad
    NATURE COMMUNICATIONS, 2011, 2
  • [10] Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy
    Foster, Daniel A. N.
    Petrosyan, Rafayel
    Pyo, Andrew G. T.
    Hoffmann, Armin
    Wang, Feng
    Woodside, Michael T.
    BIOPHYSICAL JOURNAL, 2018, 114 (07) : 1657 - 1666