Outlier detection and robust regression for correlated data

被引:47
|
作者
Yuen, Ka-Veng [1 ]
Ortiz, Gilberto A. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
关键词
Bayesian inference; Correlated noise; Maximum likelihood; Model updating; Outlier detection; BAYESIAN PROBABILISTIC APPROACH; PARAMETER-ESTIMATION; HYSTERETIC SYSTEMS; DYNAMICAL-SYSTEMS; BOOTSTRAP FILTER; IDENTIFICATION; MODELS; UNCERTAINTIES; DISTRIBUTIONS; ALGORITHMS;
D O I
10.1016/j.cma.2016.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Outlier detection has attracted considerable interest in various areas. Existing outlier detection methods usually assume independence of the modeling errors among the data points but this assumption does not hold in a number of applications. In this paper we propose a probabilistic method for outlier detection and robust updating of linear regression problems involving correlated data. First, suspicious data points will be identified using the minimum volume ellipsoid method and the maximum trimmed likelihood method. Then, the outlierness of each suspicious data point will be determined according to the proposed outlier probability in consideration of possible correlation among the data points. The proposed method is assessed and validated through simulated and real data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 646
页数:15
相关论文
共 50 条
  • [41] Outlier detection in transactional data
    Dash, Manoranjan
    Lie, Ng Wil
    INTELLIGENT DATA ANALYSIS, 2010, 14 (03) : 283 - 298
  • [42] Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation
    Toshiaki Tsukurimichi
    Yu Inatsu
    Vo Nguyen Le Duy
    Ichiro Takeuchi
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 1197 - 1228
  • [43] Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation
    Tsukurimichi, Toshiaki
    Inatsu, Yu
    Vo Nguyen Le Duy
    Takeuchi, Ichiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (06) : 1197 - 1228
  • [44] Hit screening with multivariate robust outlier detection
    Leong, Hui Sun
    Zhang, Tianhui
    Corrigan, Adam
    Serrano, Alessia
    Kunzel, Ulrike
    Mullooly, Niamh
    Wiggins, Ceri
    Wang, Yinhai
    Novick, Steven
    PLOS ONE, 2024, 19 (09):
  • [45] Robust Gaussian Kalman Filter With Outlier Detection
    Wang, Hongwei
    Li, Hongbin
    Fang, Jun
    Wang, Heping
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (08) : 1236 - 1240
  • [46] Robust outlier detection using the instability factor
    Ha, Jihyun
    Seok, Seulgi
    Lee, Jong-Seok
    KNOWLEDGE-BASED SYSTEMS, 2014, 63 : 15 - 23
  • [47] Robust outlier detection in geo-spatial data based on LOLIMOT and KNN search
    Mohammadreza Tabatabaei
    Roohollah Kimiaefar
    Alireza Hajian
    Alireza Akbari
    Earth Science Informatics, 2021, 14 : 1065 - 1072
  • [48] Robust outlier detection in geo-spatial data based on LOLIMOT and KNN search
    Tabatabaei, Mohammadreza
    Kimiaefar, Roohollah
    Hajian, Alireza
    Akbari, Alireza
    EARTH SCIENCE INFORMATICS, 2021, 14 (02) : 1065 - 1072
  • [49] Forward search outlier detection in data envelopment analysis
    Bellini, Tiziano
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 216 (01) : 200 - 207
  • [50] Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data
    Steinbuss, Georg
    Boehm, Klemens
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (04)