The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?

被引:8
作者
Gibbon, John D. [1 ]
Titi, Edriss S. [2 ,3 ,4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Incompressible Euler equations; Passive scalar; No-normal-flow boundary conditions; Singularity; Null point; POTENTIAL VORTICITY; WEAK SOLUTIONS; TURBULENCE; PRINCIPLE; HYDRODYNAMICS; EXISTENCE;
D O I
10.1007/s00332-013-9175-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The three-dimensional incompressible Euler equations with a passive scalar theta are considered in a smooth domain with no-normal-flow boundary conditions . It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector B=a double dagger qxa double dagger theta, provided B has no null points initially: is the vorticity and q=omega a <...a double dagger theta is a potential vorticity. The presence of the passive scalar concentration theta is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (Phys. Fluids 12:744-746, 2000) on the non-existence of Clebsch potentials in the neighbourhood of null points.
引用
收藏
页码:993 / 1000
页数:8
相关论文
共 46 条
  • [1] [Anonymous], 1978, MATH METHODS CLASSIC, DOI [10.1007/978-1-4757-1693-1, DOI 10.1007/978-1-4757-1693-1]
  • [2] Arnold V. I., 1998, Topological Methods in Hydrodynamics
  • [3] Bardos C, 2007, RUSS MATH SURV+, V62, P409, DOI [10.1070/RM2007v062n03ABEH004410, 10.4213/rm6811]
  • [4] Bardos C, 2010, DISCRETE CONTINUOUS, V3, P187
  • [5] The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow
    Bardos, Claude
    Titi, Edriss S.
    Wiedemann, Emil
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (15-16) : 757 - 760
  • [6] Mathematics and turbulence: where do we stand?
    Bardos, Claude W.
    Titi, Edriss S.
    [J]. JOURNAL OF TURBULENCE, 2013, 14 (03): : 42 - 76
  • [7] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [8] Brenier Y, 1999, COMMUN PUR APPL MATH, V52, P411, DOI 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO
  • [9] 2-3
  • [10] 3D Euler about a 2D symmetry plane
    Bustamante, Miguel D.
    Kerr, Robert M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 1912 - 1920