Fault Text Classification Based on Convolutional Neural Network

被引:0
作者
Wang, Lixia [1 ]
Zhang, Botao [1 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Intelligent Informat Proc & Real Time Ind, Sch Comp Sci & Technol, Wuhan, Peoples R China
来源
2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020) | 2020年
关键词
component; short text classification; convolutional neural network; character vector; word vector;
D O I
10.1109/iciea49774.2020.9101960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fault text records various fault information of the power system operation, and it is an important data source for analyzing the power system operation. The text management of power faults is becoming more and more intelligent, and the task of classification of fault texts has gradually changed from manual operation to automatic classification of the system. In order to realize automatic classification and improve the classification efficiency and accuracy of power fault texts, in view of the characteristics of power fault short texts, this paper proposes a Convolutional Neural Networks (CNN) short text based on a mixture of word vectors and character vectors. Classification model, which inputs the processed data set information to this classification model to classify short texts of power failures. The experimental results show that the accuracy rate of the proposed model on the power fault classification dataset can reach 88.35% Compared with other classification models, the feature extraction ability is stronger and the classification effect is better.
引用
收藏
页码:937 / 941
页数:5
相关论文
共 50 条
  • [41] Music Classification and Identification Based on Convolutional Neural Network
    Yuan Y.
    Liu J.
    Computer-Aided Design and Applications, 2024, 21 (S18): : 205 - 221
  • [42] Classification of Trackside Equipment Based on Convolutional Neural Network
    Li, Weidong
    Li, Jinshuang
    Liu, Yang
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4806 - 4811
  • [43] CONVOLUTIONAL NEURAL NETWORK BASED CLASSIFICATION FOR HYPERSPECTRAL DATA
    Jia, Peiyuan
    Zhang, Miao
    Yu, Wenbo
    Shen, Fei
    Shen, Yi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5075 - 5078
  • [44] Convolutional Neural Network Based Classification of App Reviews
    Aslam, Naila
    Ramay, Waheed Yousuf
    Xia, Kewen
    Sarwar, Nadeem
    IEEE ACCESS, 2020, 8 : 185619 - 185628
  • [45] A Fault Diagnosis Method of Tread Production Line Based on Convolutional Neural Network
    Wen Lihao
    Deng Yanni
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 987 - 990
  • [46] The Convolutional Neural Network Text Classification Algorithm in the Information Management of Smart Tourism Based on Internet of Things
    Meng, Lianchao
    IEEE ACCESS, 2024, 12 : 3570 - 3580
  • [47] Modified Convolutional Neural Network Filter Gate for Social Media Text Classification
    Suhaimi, Nur Suhailayani
    Othman, Zalinda
    Yaakub, Mohd Ridzwan
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 617 - 627
  • [48] Convolutional Recurrent Neural Networks for Text Classification
    Wang, Ruishuang
    Li, Zhao
    Cao, Jian
    Chen, Tong
    Wang, Lei
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [49] Convolutional Recurrent Neural Networks for Text Classification
    Lyu, Shengfei
    Liu, Jiaqi
    JOURNAL OF DATABASE MANAGEMENT, 2021, 32 (04) : 65 - 82
  • [50] A Neural Network Based Text Classification with Attention Mechanism
    Lu SiChen
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 333 - 338