Seismic fluid identification using a nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo method

被引:9
|
作者
Zhang, Guang-Zhi [1 ]
Pan, Xin-Peng [1 ]
Li, Zhen-Zhen [1 ]
Sun, Chang-Lu [1 ]
Yin, Xing-Yao [1 ]
机构
[1] China Univ Petr East China, Sch Geosci, Qingdao 266580, Shandong, Peoples R China
关键词
Elastic impedance; Nonlinear inversion; Fast Markov chain Monte Carlo method; Preconditioned conjugate gradient algorithm; Effective pore-fluid bulk modulus; BAYESIAN LITHOLOGY/FLUID INVERSION; ROCK PHYSICS; IMPROVED RESOLUTION; PARAMETERS; AVO; EQUATION;
D O I
10.1007/s12182-015-0046-5
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that efficiency and stability of inversion are both taken into consideration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
引用
收藏
页码:406 / 416
页数:11
相关论文
共 50 条
  • [1] Seismic fluid identification using a nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo method
    Guang-Zhi Zhang
    Xin-Peng Pan
    Zhen-Zhen Li
    Chang-Lu Sun
    Xing-Yao Yin
    Petroleum Science, 2015, (03) : 406 - 416
  • [2] Seismic fluid identification using a nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo method
    Guang-Zhi Zhang
    Xin-Peng Pan
    Zhen-Zhen Li
    Chang-Lu Sun
    Xing-Yao Yin
    Petroleum Science, 2015, 12 (03) : 406 - 416
  • [3] Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    GEOPHYSICS, 2019, 84 (05) : M1 - M13
  • [4] Bayesian seismic inversion: a fast sampling Langevin dynamics Markov chain Monte Carlo method
    Izzatullah, Muhammad
    van Leeuwen, Tristan
    Peter, Daniel
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (03) : 1523 - 1553
  • [5] Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
    Zhu, Dehan
    Gibson, Richard
    GEOPHYSICS, 2018, 83 (04) : R321 - R334
  • [6] Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    GEOPHYSICS, 2019, 84 (03) : R463 - R476
  • [7] Stochastic seismic acoustic impedance inversion via a Markov-chain Monte Carlo method using a single GPU card
    Moon, Seokjoon
    Cho, Yongchae
    Sim, Yongwoo
    Lee, Donghak
    Jun, Hyunggu
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 224
  • [8] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609
  • [9] Study on prestack seismic inversion using Markov Chain Monte Carlo
    Zhang Guang-Zhi
    Wang Dan-Yang
    Yin Xing-Yao
    Li Ning
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2926 - 2932
  • [10] Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method
    Xin-Peng Pan
    Guang-Zhi Zhang
    Jia-Jia Zhang
    Xing-Yao Yin
    Petroleum Science, 2017, 14 (01) : 75 - 83