Genome editing technologies and their applications in crop improvement

被引:33
|
作者
Mishra, Rukmini [1 ]
Zhao, Kaijun [1 ]
机构
[1] CAAS, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
关键词
Crop improvement; Genome editing; ZFN; TALENs; CRISPR/Cas9; FREQUENCY TARGETED MUTAGENESIS; ZINC-FINGER NUCLEASES; HOMOLOGOUS RECOMBINATION; VIRUS-RESISTANCE; GUIDE RNA; GENE; DNA; PLANT; RICE; CRISPR/CAS9;
D O I
10.1007/s11816-018-0472-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Crop improvement is very essential to meet the increasing global food demands and enhance food nutrition. Conventional crop-breeding methods have certain limitations such as taking lot of time and resources, and causing biosafety concerns. These limitations could be overcome by the recently emerged-genome editing technologies that can precisely modify DNA sequences at the genomic level using sequence-specific nucleases (SSNs). Among the artificially engineered SSNs, the CRISPR/Cas9 is the most recently developed targeted genome modification system and seems to be more efficient, inexpensive, easy, user-friendly and rapidly adopted genome-editing tool. Large-scale genome editing has not only improved the yield and quality but also has enhanced the disease resistance ability in several model and other major crops. Increasing case studies suggest that genome editing is an efficient, precise and powerful technology that can accelerate basic and applied research towards crop improvement. In this review, we briefly overviewed the structure and mechanism of genome editing tools and then emphatically reviewed the advances in the application of genome editing tools for crop improvement, including the most recent case studies with CRISPR/Cpf1 and base-editing technologies. We have also discussed the future prospects towards the improvement of agronomic traits in crops.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [21] Origin of the genome editing systems: application for crop improvement
    Viviani, Ambra
    Spada, Maria
    Giordani, Tommaso
    Fambrini, Marco
    Pugliesi, Claudio
    BIOLOGIA, 2022, 77 (12) : 3353 - 3383
  • [22] Application of genome-editing technology in crop improvement
    Ni, Zhe
    Han, Qian
    He, Yong-Qiang
    Huang, Sheng
    CEREAL CHEMISTRY, 2018, 95 (01) : 35 - 48
  • [23] Applications and potential of genome editing in crop improvement
    Yi Zhang
    Karen Massel
    Ian D. Godwin
    Caixia Gao
    Genome Biology, 19
  • [24] CRISPR/Cas9: A powerful tool for crop genome editing
    Song, Gaoyuan
    Jia, Meiling
    Chen, Kai
    Kong, Xingchen
    Khattak, Bushra
    Xie, Chuanxiao
    Li, Aili
    Mao, Long
    CROP JOURNAL, 2016, 4 (02): : 75 - 82
  • [25] Genome editing for plant research and crop improvement
    Zhan, Xiangqiang
    Lu, Yuming
    Zhu, Jian-Kang
    Botella, Jose Ramon
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (01) : 3 - 33
  • [26] Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants
    Yadav, Rakesh Kumar
    Tripathi, Manoj Kumar
    Tiwari, Sushma
    Tripathi, Niraj
    Asati, Ruchi
    Chauhan, Shailja
    Tiwari, Prakash Narayan
    Payasi, Devendra K.
    LIFE-BASEL, 2023, 13 (07):
  • [27] A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement
    Ahmar, Sunny
    Saeed, Sumbul
    Khan, Muhammad Hafeez Ullah
    Khan, Shahid Ullah
    Mora-Poblete, Freddy
    Kamran, Muhammad
    Faheem, Aroosha
    Maqsood, Ambreen
    Rauf, Muhammad
    Saleem, Saba
    Hong, Woo-Jong
    Jung, Ki-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 28
  • [28] Perspectives of Genome-Editing Technologies for HIV Therapy
    Ebina, Hirotaka
    Gee, Peter
    Koyanagi, Yoshio
    CURRENT HIV RESEARCH, 2016, 14 (01) : 2 - 8
  • [29] Application and development of genome editing technologies to the Solanaceae plants
    Yamamoto, Tsuyoshi
    Kashojiya, Sachiko
    Kamimura, Saori
    Kameyama, Takato
    Ariizumi, Tohru
    Ezura, Hiroshi
    Miura, Kenji
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 37 - 46
  • [30] DNA-free genome editing methods for targeted crop improvement
    Kanchiswamy, Chidananda Nagamangala
    PLANT CELL REPORTS, 2016, 35 (07) : 1469 - 1474