Genome editing technologies and their applications in crop improvement

被引:33
|
作者
Mishra, Rukmini [1 ]
Zhao, Kaijun [1 ]
机构
[1] CAAS, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
关键词
Crop improvement; Genome editing; ZFN; TALENs; CRISPR/Cas9; FREQUENCY TARGETED MUTAGENESIS; ZINC-FINGER NUCLEASES; HOMOLOGOUS RECOMBINATION; VIRUS-RESISTANCE; GUIDE RNA; GENE; DNA; PLANT; RICE; CRISPR/CAS9;
D O I
10.1007/s11816-018-0472-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Crop improvement is very essential to meet the increasing global food demands and enhance food nutrition. Conventional crop-breeding methods have certain limitations such as taking lot of time and resources, and causing biosafety concerns. These limitations could be overcome by the recently emerged-genome editing technologies that can precisely modify DNA sequences at the genomic level using sequence-specific nucleases (SSNs). Among the artificially engineered SSNs, the CRISPR/Cas9 is the most recently developed targeted genome modification system and seems to be more efficient, inexpensive, easy, user-friendly and rapidly adopted genome-editing tool. Large-scale genome editing has not only improved the yield and quality but also has enhanced the disease resistance ability in several model and other major crops. Increasing case studies suggest that genome editing is an efficient, precise and powerful technology that can accelerate basic and applied research towards crop improvement. In this review, we briefly overviewed the structure and mechanism of genome editing tools and then emphatically reviewed the advances in the application of genome editing tools for crop improvement, including the most recent case studies with CRISPR/Cpf1 and base-editing technologies. We have also discussed the future prospects towards the improvement of agronomic traits in crops.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [1] Genome editing technologies and their applications in crop improvement
    Rukmini Mishra
    Kaijun Zhao
    Plant Biotechnology Reports, 2018, 12 : 57 - 68
  • [2] Perspectives on the Application of Genome-Editing Technologies in Crop Breeding
    Hua, Kai
    Zhang, Jinshan
    Botella, Jose Ramon
    Ma, Changle
    Kong, Fanjiang
    Liu, Baohui
    Zhu, Jian-Kang
    MOLECULAR PLANT, 2019, 12 (08) : 1047 - 1059
  • [3] Genome Editing-Principles and Applications for Functional Genomics Research and Crop Improvement
    Zhang, Hui
    Zhang, Jinshan
    Lang, Zhaobo
    Botella, Jose Ramon
    Zhu, Jian-Kang
    CRITICAL REVIEWS IN PLANT SCIENCES, 2017, 36 (04) : 291 - 309
  • [4] Advancements in genome editing tools for genetic studies and crop improvement
    Ahmadikhah, Asadollah
    Zarabizadeh, Homa
    Nayeri, Shahnoush
    Abbasi, Mohammad Sadegh
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [5] Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement
    Abdelrahman, Mohamed
    Wei, Zheng
    Rohila, Jai S. S.
    Zhao, Kaijun
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [6] Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses
    Hamdan, Mohd Fadhli
    Karlson, Chou Khai Soong
    Teoh, Ee Yang
    Lau, Su-Ee
    Tan, Boon Chin
    PLANTS-BASEL, 2022, 11 (19):
  • [7] Genome Editing: Revolutionizing the Crop Improvement
    Saurabh, Satyajit
    PLANT MOLECULAR BIOLOGY REPORTER, 2021, 39 (04) : 752 - 772
  • [8] Recent advances in CRISPR/Cas mediated genome editing for crop improvement
    Sharma, Samriti
    Kaur, Rajinder
    Singh, Anupama
    PLANT BIOTECHNOLOGY REPORTS, 2017, 11 (04) : 193 - 207
  • [9] Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns
    Zafar, Kashaf
    Sedeek, Khalid E. M.
    Rao, Gundra Sivakrishna
    Khan, Muhammad Zuhaib
    Amin, Imran
    Kamel, Radwa
    Mukhtar, Zahid
    Zafar, Mehak
    Mansoor, Shahid
    Mahfouz, Magdy M.
    FRONTIERS IN GENOME EDITING, 2020, 2
  • [10] Applications and potential of genome editing in crop improvement
    Zhang, Yi
    Massel, Karen
    Godwin, Ian D.
    Gao, Caixia
    GENOME BIOLOGY, 2018, 19