Static state feedback linearization of nonlinear control systems on homogeneous time scales

被引:7
作者
Bartosiewicz, Zbigniew [1 ]
Kotta, Uelle [2 ]
Tonso, Maris [2 ]
Wyrwas, Malgorzata [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[2] Tallinn Univ Technol, Inst Cybernet, EE-12618 Tallinn, Estonia
关键词
Feedback linearization; Nonlinear control systems; Time scale; Differential forms; ALGEBRAIC FORMALISM; EQUATIONS; CALCULUS; SHIFT; FORMS;
D O I
10.1007/s00498-015-0150-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper addresses the problem of static state feedback linearization for nonlinear control systems defined on homogeneous time scales. Necessary and sufficient conditions for generic local linearizability of the considered systems by static state feedback and state transformation are presented in terms of a sequence of sub-spaces of differential one-forms related to the system.
引用
收藏
页码:523 / 550
页数:28
相关论文
共 39 条
[1]   Modelling and identification of non-linear deterministic systems in the delta-domain [J].
Anderson, S. R. ;
Kadirkamanathan, V. .
AUTOMATICA, 2007, 43 (11) :1859-1868
[2]   Linearization of discrete-time systems [J].
ArandaBricaire, E ;
Kotta, U ;
Moog, CH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) :1999-2023
[3]  
Bartosiewicz Z, 2007, PROC EST ACAD SCI-PH, V56, P264
[4]  
Bartosiewicz Z, 2006, CONTROL CYBERN, V35, P769
[5]   Algebraic formalism of differential p-forms and vector fields for nonlinear control systems on homogeneous time scales [J].
Bartosiewicz, Zbigniew ;
Kotta, Uelle ;
Pawluszewicz, Ewa ;
Tonso, Maris ;
Wyrwas, Malgorzata .
PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2013, 62 (04) :215-226
[6]   Linear positive control systems on time scales; controllability [J].
Bartosiewicz, Zbigniew .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (03) :327-343
[7]   On stabilisability of nonlinear systems on time scales [J].
Bartosiewicz, Zbigniew ;
Piotrowska, Ewa .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (01) :139-145
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction With Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[9]  
Briat C, 2011, 18 IFAC WORLD C MIL, P11374
[10]  
Bryant R L., 1991, Exterior Differential Systems, V18