In-doped Sb nanowires grown by MOCVD for high speed phase change memories

被引:6
作者
Cecchini, R. [1 ]
Selmo, S. [1 ,2 ]
Wiemer, C. [1 ]
Fanciulli, M. [1 ,2 ]
Rotunno, E. [3 ,5 ]
Lazzarini, L. [3 ]
Rigato, M. [4 ]
Pogany, D. [4 ]
Lugstein, A. [4 ]
Longo, M. [1 ]
机构
[1] CNR IMM, Via C Olivetti 2, I-20864 Agrate Brianza, MB, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, Via R Cozzi 53, I-20126 Milan, Italy
[3] CNR IMEM, Parco Area Sci 37-A, I-43124 Parma, Italy
[4] TU Wien, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[5] CNR IMM, Zona Ind, Str 8 5, I-95121 Catania, Italy
来源
MICRO AND NANO ENGINEERING | 2019年 / 2卷
关键词
Phase change memories; Nanowires; MOCVD; In-Sb; TEM; XRD;
D O I
10.1016/j.mne.2018.11.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (similar to 400 mu W) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials. (c) 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:117 / 121
页数:5
相关论文
共 29 条
[1]   Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal-Organic Chemical Vapor Deposition [J].
Ahn, Jun-Ku ;
Park, Kyoung-Woo ;
Jung, Hyun-June ;
Yoon, Soon-Gil .
NANO LETTERS, 2010, 10 (02) :472-477
[2]  
[Anonymous], 2017, INORGANIC CRYSTAL ST
[3]  
Atwood G., 2018, Phase Change Memory, P313
[4]   CRYSTAL STRUCTURE OF ANTIMONY AT 4.2, 78 AND 298 DEGREES K [J].
BARRETT, CS ;
CUCKA, P ;
HAEFNER, K .
ACTA CRYSTALLOGRAPHICA, 1963, 16 (06) :451-&
[5]  
Boniardi M, 2014, INT EL DEVICES MEET, P29
[6]   Phase change memory technology [J].
Burr, Geoffrey W. ;
Breitwisch, Matthew J. ;
Franceschini, Michele ;
Garetto, Davide ;
Gopalakrishnan, Kailash ;
Jackson, Bryan ;
Kurdi, Buelent ;
Lam, Chung ;
Lastras, Luis A. ;
Padilla, Alvaro ;
Rajendran, Bipin ;
Raoux, Simone ;
Shenoy, Rohit S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02) :223-262
[7]   A review of emerging non-volatile memory (NVM) technologies and applications [J].
Chen, An .
SOLID-STATE ELECTRONICS, 2016, 125 :25-38
[8]   Phase-Change Memory-Towards a Storage-Class Memory [J].
Fong, Scott W. ;
Neumann, Christopher M. ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (11) :4374-4385
[9]   MOVPE GROWTH OF GAAS USING A N2 CARRIER [J].
HARDTDEGEN, H ;
HOLLFELDER, M ;
MEYER, R ;
CARIUS, R ;
MUNDER, H ;
FROHNHOFF, S ;
SZYNKA, D ;
LUTH, H .
JOURNAL OF CRYSTAL GROWTH, 1992, 124 (1-4) :420-426
[10]   Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices [J].
Ielmini, Daniele ;
Zhang, Yuegang .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)