Using human gaze in few-shot imitation learning for robot manipulation

被引:1
作者
Hamano, Shogo [1 ]
Kim, Heecheol [1 ]
Ohmura, Yoshiyuki [1 ]
Kuniyoshi, Yasuo [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Lab Intelligent Syst & Informat, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
关键词
Imitation Learning; Deep Learning in Grasping and Manipulation; Few-shot Learning; Meta-learning; Telerobotics and Teleoperation;
D O I
10.1109/IROS47612.2022.9981706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Imitation learning has attracted attention as a method for realizing complex robot control without programmed robot behavior. Meta-imitation learning has been proposed to solve the high cost of data collection and low generalizability to new tasks that imitation learning suffers from. Meta-imitation can learn new tasks involving unknown objects from a small amount of data by learning multiple tasks during training. However, meta-imitation learning, especially using images, is still vulnerable to changes in the background, which occupies a large portion of the input image. This study introduces a human gaze into meta-imitation learning-based robot control. We created a model with model-agnostic meta-learning to predict the gaze position from the image by measuring the gaze with an eye tracker in the head-mounted display. Using images around the predicted gaze position as an input makes the model robust to changes in visual information. We experimentally verified the performance of the proposed method through picking tasks using a simulated robot. The results indicate that our proposed method has a greater ability than the conventional method to learn a new task from only 9 demonstrations even if the object's color or the background pattern changes between the training and test.
引用
收藏
页码:8622 / 8629
页数:8
相关论文
共 50 条
  • [21] Diversified Contrastive Learning For Few-Shot Classification
    Lu, Guangtong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 147 - 158
  • [22] Reinforcement Learning in Few-Shot Scenarios: A Survey
    Zhechao Wang
    Qiming Fu
    Jianping Chen
    Yunzhe Wang
    You Lu
    Hongjie Wu
    Journal of Grid Computing, 2023, 21
  • [23] Few-shot learning based on deep learning: A survey
    Zeng, Wu
    Xiao, Zheng-ying
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 679 - 711
  • [24] Iris recognition based on few-shot learning
    Lei, Songze
    Dong, Baihua
    Li, Yonggang
    Xiao, Feng
    Tian, Feng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [25] Reinforcement Learning in Few-Shot Scenarios: A Survey
    Wang, Zhechao
    Fu, Qiming
    Chen, Jianping
    Wang, Yunzhe
    Lu, You
    Wu, Hongjie
    JOURNAL OF GRID COMPUTING, 2023, 21 (02)
  • [26] Subspace Adaptation Prior for Few-Shot Learning
    Mike Huisman
    Aske Plaat
    Jan N. van Rijn
    Machine Learning, 2024, 113 : 725 - 752
  • [27] Few-shot Learning for Heterogeneous Information Networks
    Fang, Yang
    Zhao, Xiang
    Xiao, Weidong
    De Rijke, Maarten
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)
  • [28] Relative Performance Prediction using Few-Shot Learning
    Dey, Arunavo
    Dhakal, Aakash
    Islam, Tanzima Z.
    Yeom, Jae-Seung
    Patki, Tapasya
    Nichols, Daniel
    Movsesyan, Alexander
    Bhatele, Abhinav
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 1764 - 1769
  • [29] An Intrusion Detection Method Using Few-Shot Learning
    Yu, Yingwei
    Bian, Naizheng
    IEEE ACCESS, 2020, 8 (08): : 49730 - 49740
  • [30] Enhancing few-shot learning using targeted mixup
    Darkwah Jr, Yaw
    Kang, Dae-Ki
    APPLIED INTELLIGENCE, 2025, 55 (04)