Approximation by group invariant subspaces

被引:4
|
作者
Barbieri, Davide [1 ]
Cabrelli, Carlos [2 ,3 ]
Hernandez, Eugenio [1 ]
Molter, Ursula [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[3] Inst Matemat Luis Santalo IMAS CONICET UBA, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
基金
欧盟地平线“2020”;
关键词
Invariant subspaces; Data approximation; Parseval frames; Optimal subspaces; SPACES;
D O I
10.1016/j.matpur.2020.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the structure of Gamma-invariant spaces of L-2 (S). Here S is a second countable LCA group. The invariance is with respect to the action of Gamma, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Gamma-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Gamma-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Gamma-invariant subspace that best approximates a set of functional data in L-2 (S). This is very relevant in applications since in the euclidean case, Gamma-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:76 / 100
页数:25
相关论文
共 50 条
  • [41] On the Lipschitz stability of (A, B)-invariant subspaces
    Puerta, Ferran
    Puerta, Xavier
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 182 - 190
  • [42] Two Types of Invariant Subspaces in the Polydisc
    Koca, Beyaz Basak
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1297 - 1305
  • [43] Bounded Sequences, Orbits and Invariant Subspaces
    Driss Drissi
    Complex Analysis and Operator Theory, 2010, 4 : 813 - 819
  • [44] Invariant Subspaces of Idempotents on Hilbert Spaces
    Bala, Neeru
    Ghosh, Nirupam
    Sarkar, Jaydeb
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (01)
  • [45] Monomial codes seen as invariant subspaces
    Isabel Garcia-Planas, Maria
    Dolors Magret, Maria
    Emilie Um, Laurence
    OPEN MATHEMATICS, 2017, 15 : 1099 - 1107
  • [46] INVARIANT SUBSPACES IN SPN BLOCK CIPHER
    Trifonov, D., I
    Fomin, D. B.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2021, (54): : 58 - 76
  • [47] On rank one matrices and invariant subspaces
    Osnaga, Silvia Monica
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2005, 10 (01): : 145 - 148
  • [48] INVARIANT SUBSPACES OF THE DIRICHLET SHIFT AND PSEUDOCONTINUATIONS
    RICHTER, S
    SUNDBERG, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) : 863 - 879
  • [49] On the Invariant Subspaces of the Fractional Integral Operator
    Gurdal, Mehmet
    Nabiev, Anar Adiloglu
    Ayyildiz, Meral
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (02):
  • [50] Invariant subspaces of multiple tensor products
    Kubrusly, Carlos S.
    ACTA SCIENTIARUM MATHEMATICARUM, 2009, 75 (3-4): : 679 - 692