Approximation by group invariant subspaces

被引:4
|
作者
Barbieri, Davide [1 ]
Cabrelli, Carlos [2 ,3 ]
Hernandez, Eugenio [1 ]
Molter, Ursula [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[3] Inst Matemat Luis Santalo IMAS CONICET UBA, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
基金
欧盟地平线“2020”;
关键词
Invariant subspaces; Data approximation; Parseval frames; Optimal subspaces; SPACES;
D O I
10.1016/j.matpur.2020.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the structure of Gamma-invariant spaces of L-2 (S). Here S is a second countable LCA group. The invariance is with respect to the action of Gamma, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Gamma-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Gamma-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Gamma-invariant subspace that best approximates a set of functional data in L-2 (S). This is very relevant in applications since in the euclidean case, Gamma-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:76 / 100
页数:25
相关论文
共 50 条
  • [21] On invariant subspaces of operators in the class θ
    Kim, Jaewoong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 562 - 568
  • [22] Invariant subspaces for tridiagonal operators
    Grivaux, S
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (08): : 681 - 691
  • [23] Anisotropic dilations of shift-invariant subspaces and approximation properties in L2(Rd)
    Cifuentes, P.
    San Antolin, A.
    Soto-Bajo, M.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 525 - 539
  • [24] Covariant representations of subproduct systems: Invariant subspaces and curvature
    Sarkar, Jaydeb
    Trivedi, Harsh
    Veerabathiran, Shankar
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 211 - 232
  • [25] CYCLIC VECTORS AND INVARIANT SUBSPACES FOR BERGMAN AND DIRICHLET SHIFTS
    Gallardo-Gutierrez, Eva A.
    Partington, Jonathan R.
    Segura, Dolores
    JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 199 - 214
  • [26] Spectral Continuity Relative to Invariant Subspaces
    Salvador Sánchez-Perales
    Slaviša V. Djordjević
    Complex Analysis and Operator Theory, 2017, 11 : 927 - 941
  • [27] The Proper Elements and Simple Invariant Subspaces
    Djordjevic, Slavisa V.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (01): : 17 - 23
  • [28] Subspaces of C∞ invariant under the differentiation
    Aleman, Alexandru
    Baranov, Anton
    Belov, Yurii
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) : 2421 - 2439
  • [29] NUMERICAL CONSIDERATIONS IN COMPUTING INVARIANT SUBSPACES
    DONGARRA, JJ
    HAMMARLING, S
    WILKINSON, JH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 145 - 161
  • [30] Invariant subspaces for polynomially hyponormal operators
    Prunaru, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1689 - 1691