Approximation by group invariant subspaces

被引:4
|
作者
Barbieri, Davide [1 ]
Cabrelli, Carlos [2 ,3 ]
Hernandez, Eugenio [1 ]
Molter, Ursula [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[3] Inst Matemat Luis Santalo IMAS CONICET UBA, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
基金
欧盟地平线“2020”;
关键词
Invariant subspaces; Data approximation; Parseval frames; Optimal subspaces; SPACES;
D O I
10.1016/j.matpur.2020.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the structure of Gamma-invariant spaces of L-2 (S). Here S is a second countable LCA group. The invariance is with respect to the action of Gamma, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Gamma-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Gamma-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Gamma-invariant subspace that best approximates a set of functional data in L-2 (S). This is very relevant in applications since in the euclidean case, Gamma-invariant subspaces are invariant under rigid movements, a very sought feature in models for signal processing. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:76 / 100
页数:25
相关论文
共 50 条
  • [1] Learning optimal smooth invariant subspaces for data approximation
    Barbieri, D.
    Cabrelli, C.
    Hernandez, E.
    Molter, U.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (02)
  • [2] A REMARK ON INVARIANT SUBSPACES OF POSITIVE OPERATORS
    Troitsky, Vladimir G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4345 - 4348
  • [3] On subspaces of invariant vectors
    Shulman, Tatiana
    STUDIA MATHEMATICA, 2017, 236 (01) : 1 - 11
  • [4] Quasiaffinity and invariant subspaces
    A. Mello
    C. S. Kubrusly
    Archiv der Mathematik, 2016, 107 : 173 - 184
  • [5] Convergence of restarted Krylov subspaces to invariant subspaces
    Beattie, C
    Embree, M
    Rossi, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (04) : 1074 - 1109
  • [6] Quasiaffinity and invariant subspaces
    Mello, A.
    Kubrusly, C. S.
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 173 - 184
  • [8] CHARACTERIZATION OF INVARIANT SUBSPACES IN THE POLYDISC
    Maji, Amit
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    Sankar, T. R.
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 445 - 468
  • [9] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [10] On Invariant Subspaces for the Shift Operator
    Liu, Junfeng
    SYMMETRY-BASEL, 2019, 11 (06):