Existence of multi-bump solutions for a class of Kirchhoff type problems in R3

被引:15
作者
Liang, Sihua [1 ,2 ]
Shi, Shaoyun [2 ,3 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; SEMICLASSICAL STATES; CRITICAL FREQUENCY; STANDING WAVES; BOUND-STATES; MULTIPLICITY;
D O I
10.1063/1.4850835
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using variational methods, we establish existence of multi-bump solutions for a class of Kirchhoff type problems -(a + b integral(R3)vertical bar del u vertical bar(2)dx)Delta u +lambda V(x) u = f(u), where f is a continuous function with subcritical growth, V( x) is a critical frequency in the sense that inf(x epsilon R3) V(x) = 0. We show that if the zero set of V( x) has several isolated connected components Omega(1),..., Omega(k) such that the interior of Omega(i) is not empty and partial derivative Omega(i) is smooth, then for lambda > 0 large there exists, for any non-empty subset J subset of {1,..., k}, a bump solution is trapped in a neighborhood of boolean OR(j epsilon J)Omega(j). (C) 2013 AIP Publishing LLC.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Normalized multi-bump solutions of nonlinear Kirchhoff equations
    Shu, Zhidan
    Zhang, Jianjun
    AIMS MATHEMATICS, 2024, 9 (06): : 16790 - 16809
  • [32] The Existence of Multiple Solutions for Nonhomogeneous Kirchhoff Type Equations in R3
    Zhang, Qi
    Zhu, Xiaoli
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [33] Multi-bump Solutions for a Semilinear Schrodinger Equation
    Lin, Lishan
    Liu, Zhaoli
    Chen, Shaowei
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1659 - 1689
  • [34] Multi-bump solutions for a class of quasilinear problems involving variable exponents
    Claudianor O. Alves
    Marcelo C. Ferreira
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1563 - 1593
  • [35] Existence of multi-bump solutions for the Schrodinger-Poisson system
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [36] MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEMS WITH EXPONENTIAL CRITICAL GROWTH IN R2
    Alves, Claudianor O.
    Pereira, Denilson S.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) : 273 - 297
  • [37] EXISTENCE OF SOLUTIONS FOR QUASILINEAR KIRCHHOFF TYPE PROBLEMS WITH CRITICAL NONLINEARITY IN RN
    Zhang, Jing
    Chen, Alatancang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (05) : 1725 - 1753
  • [38] Existence and Uniqueness of Multi-Bump Solutions for Nonlinear Schrodinger-Poisson Systems
    Yu, Mingzhu
    Chen, Haibo
    ADVANCED NONLINEAR STUDIES, 2021, 21 (03) : 661 - 681
  • [39] On multi-bump solutions of nonlinear Schrodinger equation with electromagnetic fields and critical nonlinearity in RN
    Liang, Sihua
    Shi, Shaoyun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [40] Infinitely many sign-changing solutions for Kirchhoff type problems in R3
    Sun, Jijiang
    Li, Lin
    Cencelj, Matija
    Gabrovsek, Bostjan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 33 - 54