Modelling quantitative structure activity-activity relationships (QSAARs): auto-pass-pass, a new approach to fill data gaps in environmental risk assessment under the REACH regulation

被引:9
作者
Bouhedjar, K. [1 ,2 ,3 ]
Benfenati, E. [3 ]
Nacereddine, A. K. [4 ]
机构
[1] Univ Badji Mokhtar Annaba, Lab Synthese & Biocatalyse Organ, Dept Chim, Fac Sci, Annaba, Algeria
[2] Ctr Rech Biotechnol CRBt, Lab Bioinformat, Constantine, Algeria
[3] Ist Ric Farmacol Mario Negri IRCCS, Lab Environm Chem & Toxicol, Milan, Italy
[4] Higher Normal Sch Technol Educ Skikda, Dept Phys & Chem, Lab Phys Chem & Biol Mat, Skikda, Algeria
关键词
QSAR; QSAAR; interspecies correlation; aquatic toxicity; STRUCTURE-TOXICITY RELATIONSHIPS; DIFFERENT VALIDATION CRITERIA; TETRAHYMENA-PYRIFORMIS; EXCESS TOXICITY; QSAR MODELS; AQUATIC TOXICITY; INTERSPECIES CORRELATION; EXTERNAL PREDICTIVITY; DATA SET; PHENOLS;
D O I
10.1080/1062936X.2020.1810770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reviewing the toxicological literature for over the past decades, the key elements of QSAR modelling have been the mechanisms of toxic action and chemical classes. As a result, it is often hard to design an acceptable single model for a particular endpoint without clustering compounds. The main aim here was to develop a Pass-Pass Quantitative Structure-Activity-Activity Relationship (PP QSAAR) model for direct prediction of the toxicity of a larger set of compounds, combing the application of an already predicted model for another species, and molecular descriptors. We investigated a large acute toxicity data set of five aquatic organisms, fish,Daphnia magna, and algae from the VEGA-Hub, as well as Tetrahymena pyriformis and Vibrio fischeri. The statistical quality of the models encouraged us to consider this alternative for the prediction of toxicity using interspecies extrapolation QSAAR models without regard to the toxicity mechanism or chemical class. In the case of algae, the use of activity values from a second species did not improve the models. This can be attributed to the weak interspecies relationships, due to different aquatic toxicity mechanisms in species.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 72 条
[1]   Ligand - based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks [J].
Afantitis, Antreas ;
Melagraki, Georgia ;
Koutentis, Panayiotis A. ;
Sarimveis, Haralambos ;
Kollias, George .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2011, 46 (02) :497-508
[2]   A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs [J].
Afantitis, Antreas ;
Melagraki, Georgia ;
Sarimveis, Haralambos ;
Koutentis, Panayiotis A. ;
Igglessi-Markopoulou, Olga ;
Kollias, George .
MOLECULAR DIVERSITY, 2010, 14 (02) :225-235
[3]  
Aptula AO, 2002, QUANT STRUCT-ACT REL, V21, P12, DOI 10.1002/1521-3838(200205)21:1<12::AID-QSAR12>3.0.CO
[4]  
2-M
[5]   Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs [J].
Aruoja, Villem ;
Sihtmaee, Mariliis ;
Dubourguier, Henri-Charles ;
Kahru, Anne .
CHEMOSPHERE, 2011, 84 (10) :1310-1320
[6]   MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development [J].
Barron, M. G. ;
Lilavois, C. R. ;
Martin, T. M. .
AQUATIC TOXICOLOGY, 2015, 161 :102-107
[7]  
Benfenati E., 2013, CEUR WORKSHOP P, P21, DOI [10.1055/s-0033-1360292, DOI 10.1055/S-0033-1360292]
[8]  
Benfenati E, 2020, METHOD PHARMACOL TOX, P759, DOI 10.1007/978-1-0716-0150-1_30
[9]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[10]  
Bouhedjar K., 2019, Int. J. Quantit. Struct.-Property Relationships, V4, P15, DOI [10.4018/IJQSPR.2019100102, DOI 10.4018/IJQSPR.2019100102]