Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering

被引:192
作者
Sowjanya, J. A. [1 ]
Singh, J. [1 ]
Mohita, T. [1 ]
Sarvanan, S. [1 ]
Moorthi, A. [1 ]
Srinivasan, N. [2 ]
Selvamurugan, N. [1 ]
机构
[1] SRM Univ, Sch Bioengn, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India
[2] Univ Madras Taramani, Dr ALM Post Grad Inst Basic Med Sci, Dept Endocrinol, Madras, Tamil Nadu, India
关键词
Chitosan; Alginate; Nano-silica; Biocomposites; Scaffold; Bone; HYDROXYAPATITE FORMATION; CHITOSAN SCAFFOLDS; GEL; POLYMER;
D O I
10.1016/j.colsurfb.2013.04.006
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Bone tissue engineering is a promising alternative method for treating bone loss by a combination of biomaterials and cells. In this study, we fabricated biocomposite scaffolds by blending chitosan (CS), alginate (Alg) and nano-silica (nSiO(2)), followed by freeze drying. The prepared scaffolds (CS/Alg, CS/Alg/nSiO(2)) were characterized by SEM, FT-IR and XRD analyses. In vitro studies such as swelling, biodegradation, biomineralization, protein adsorption and cytotoxicity were also carried out. The scaffolds possessed a well-defined porous architecture with pore sizes varying from 20 to 100 mu m suitable for cell infiltration. The presence of nSiO(2) in the scaffolds facilitated increased protein adsorption and controlled swelling ability. The scaffolds were biodegradable and the addition of nSiO(2) improved apatite deposition on these scaffolds. There was no significant cytotoxicity effect of these CS/Alg/nSiO(2) scaffolds towards osteolineage cells. Thus, these results indicate that CS/Alg/nSiO(2) scaffolds may have potential applications for bone tissue engineering. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 27 条
[1]   Regulating bone formation via controlled scaffold degradation [J].
Alsberg, E ;
Kong, HJ ;
Hirano, Y ;
Smith, MK ;
Albeiruti, A ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) :903-908
[2]   HARD TISSUE REPLACEMENT (HTR) POLYMER AS AN IMPLANT MATERIAL [J].
AMLER, MH ;
LEGEROS, RZ .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1990, 24 (08) :1079-1089
[3]  
Becker TA, 2001, J BIOMED MATER RES, V54, P76, DOI 10.1002/1097-4636(200101)54:1<76::AID-JBM9>3.0.CO
[4]  
2-V
[5]  
Binulal NS, 2010, TISSUE ENG PT A, V16, P393, DOI [10.1089/ten.tea.2009.0242, 10.1089/ten.TEA.2009.0242]
[6]   45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering [J].
Chen, QZZ ;
Thompson, ID ;
Boccaccini, AR .
BIOMATERIALS, 2006, 27 (11) :2414-2425
[7]   Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J].
Chenite, A ;
Chaput, C ;
Wang, D ;
Combes, C ;
Buschmann, MD ;
Hoemann, CD ;
Leroux, JC ;
Atkinson, BL ;
Binette, F ;
Selmani, A .
BIOMATERIALS, 2000, 21 (21) :2155-2161
[8]  
COPP D. H., 1963, ORAL SURG ORAL MED AND ORAL PATHOL, V16, P738, DOI 10.1016/0030-4220(63)90081-1
[9]   Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology [J].
Duarte, Ana Rita C. ;
Mano, Joao F. ;
Reis, Rui L. .
EUROPEAN POLYMER JOURNAL, 2009, 45 (01) :141-148
[10]  
Gutowska A., 2001, ANAT REC, V9, P242