Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering

被引:188
|
作者
Sowjanya, J. A. [1 ]
Singh, J. [1 ]
Mohita, T. [1 ]
Sarvanan, S. [1 ]
Moorthi, A. [1 ]
Srinivasan, N. [2 ]
Selvamurugan, N. [1 ]
机构
[1] SRM Univ, Sch Bioengn, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India
[2] Univ Madras Taramani, Dr ALM Post Grad Inst Basic Med Sci, Dept Endocrinol, Madras, Tamil Nadu, India
关键词
Chitosan; Alginate; Nano-silica; Biocomposites; Scaffold; Bone; HYDROXYAPATITE FORMATION; CHITOSAN SCAFFOLDS; GEL; POLYMER;
D O I
10.1016/j.colsurfb.2013.04.006
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Bone tissue engineering is a promising alternative method for treating bone loss by a combination of biomaterials and cells. In this study, we fabricated biocomposite scaffolds by blending chitosan (CS), alginate (Alg) and nano-silica (nSiO(2)), followed by freeze drying. The prepared scaffolds (CS/Alg, CS/Alg/nSiO(2)) were characterized by SEM, FT-IR and XRD analyses. In vitro studies such as swelling, biodegradation, biomineralization, protein adsorption and cytotoxicity were also carried out. The scaffolds possessed a well-defined porous architecture with pore sizes varying from 20 to 100 mu m suitable for cell infiltration. The presence of nSiO(2) in the scaffolds facilitated increased protein adsorption and controlled swelling ability. The scaffolds were biodegradable and the addition of nSiO(2) improved apatite deposition on these scaffolds. There was no significant cytotoxicity effect of these CS/Alg/nSiO(2) scaffolds towards osteolineage cells. Thus, these results indicate that CS/Alg/nSiO(2) scaffolds may have potential applications for bone tissue engineering. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 50 条
  • [1] Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering
    Venkatesan, Jayachandran
    Bhatnagar, Ira
    Kim, Se-Kwon
    MARINE DRUGS, 2014, 12 (01): : 300 - 316
  • [2] Chitosan based biocomposite scaffolds for bone tissue engineering
    Saravanan, S.
    Leena, R. S.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 1354 - 1365
  • [3] Highly Porous Biocomposite Scaffolds Fabricated by Chitosan/Alginate/Diatom for Tissue Engineering
    Ozcan, Yusuf
    Gonenmis, Dicle Erden
    Kizilhan, Esranur
    Gok, Cem
    POLYMER-KOREA, 2022, 46 (04) : 455 - 462
  • [4] Chitosan-alginate hybrid scaffolds for bone tissue engineering
    Li, ZS
    Ramay, HR
    Hauch, KD
    Xiao, DM
    Zhang, MQ
    BIOMATERIALS, 2005, 26 (18) : 3919 - 3928
  • [5] Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering
    Pattnaik, Soumitri
    Nethala, Sricharan
    Tripathi, Anjali
    Saravanan, Sekaran
    Moorthi, Ambigapathi
    Selvamurugan, Nagarajan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 49 (05) : 1167 - 1172
  • [6] Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering
    Kim, Hye-Lee
    Jung, Gil-Yong
    Yoon, Jun-Ho
    Han, Jung-Suk
    Park, Yoon-Jeong
    Kim, Do-Gyoon
    Zhang, Miqin
    Kim, Dae-Joon
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 54 : 20 - 25
  • [7] In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering
    Jin, Hyeong-Ho
    Kim, Dong-Hyun
    Kim, Tae-Wan
    Shin, Keun-Koo
    Jung, Jin Sup
    Park, Hong-Chae
    Yoon, Seog-Young
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1079 - 1085
  • [8] Fabrication of BioMIL-4/Chitosan/Alginate-Based Nanocomposite Scaffolds for Bone Tissue Engineering
    Jafari, Ramin
    Tohidi, Maryam
    Rastegari, Banafsheh
    Zeinali, Sedigheh
    ACS APPLIED NANO MATERIALS, 2023, 6 (20) : 19359 - 19369
  • [9] Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering
    Shaheen, Th, I
    Montaser, A. S.
    Li, Suming
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 121 : 814 - 821
  • [10] CHARACTERIZATION OF THREE DIMENSIONAL SCAFFOLDS FROM LOCAL CHITOSAN/ALGINATE/GEOTHERMAL SILICA FOR POTENTIAL TISSUE ENGINEERING APPLICATIONS
    Kusumastuti, Yuni
    Kobayashi, Mime
    Purwaningtyas, Fiska Yohana
    Najmina, Mazaya
    Petrus, Himawan Tri Bayu Murti
    Putri, Nur Rofiqoh Eviana
    Budhijanto
    Tanihara, Masao
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2018, 13 (11) : 3500 - 3515