Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser

被引:20
|
作者
Fedyanin, Dmitry Yu [1 ]
Krasavin, Alexey, V [2 ,3 ]
Arsenin, Aleksey, V [1 ]
Zayats, Anatoly, V [2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Lab Nanoopt & Plasmon, Ctr Photon & 2D Mat, 9 Inst Sky Lane, Dolgoprudnyi 141700, Russia
[2] Kings Coll London, Dept Phys, London WC2R 2LS, England
[3] Kings Coll London, London Ctr Nanotechnol, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
integrated nanolaser; plasmonics; surface plasmon polariton amplification; SEMICONDUCTOR-LASERS; BAND; HETEROSTRUCTURES; THRESHOLDLESS; PERFORMANCE; INJECTION; CIRCUITRY; SILICON; GAIN;
D O I
10.1515/nanoph-2020-0157
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength lambda and a mode volume of under lambda(3)/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 mu W and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single molecule biosensing.
引用
收藏
页码:3965 / 3975
页数:11
相关论文
共 50 条
  • [21] Coherent surface waves generated using phased surface plasmons
    Kolerov, A. N.
    Onishchenko, D. V.
    TECHNICAL PHYSICS LETTERS, 2012, 38 (03) : 248 - 250
  • [22] OPTICAL EMISSION FROM SURFACE PLASMONS
    RITCHIE, RH
    PHYSICA STATUS SOLIDI, 1970, 39 (01): : 297 - &
  • [23] Stimulated emission of phonons and plasmons by ballistic electrons in nanoscale contacts
    Shuklin, F. A.
    Khurgin, J. B.
    Smetanin, I. V.
    Protsenko, I. E.
    Bouhelier, A.
    Mukhin, I. S.
    Uskov, A. V.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 429 - 429
  • [24] Coherent surface waves generated using phased surface plasmons
    A. N. Kolerov
    D. V. Onishchenko
    Technical Physics Letters, 2012, 38 : 248 - 250
  • [25] Plasmons localized at nanoscale perturbations of flat metal surface
    Sturman, B. I.
    Podivilov, E. V.
    Gorkunov, M. V.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (07) : 1607 - 1613
  • [26] Applications of optically and electrically driven nanoscale bowtie antennas
    Zhongjun Jiang
    Yingjian Liu
    Liang Wang
    Opto-Electronic Science, 2022, 1 (04) : 14 - 24
  • [27] Electrically driven cavity plasmons in Au nanowire over Au film
    Zhang, Junhao
    Wu, Yu
    Zhou, Wenna
    Tang, Jibo
    Zhang, Shunping
    Xu, Hongxing
    NANO EXPRESS, 2024, 5 (03):
  • [28] Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons
    Nong, Jinpeng
    Wei, Wei
    Wang, Wei
    Lan, Guilian
    Shang, Zhengguo
    Yi, Juemin
    Tang, Linlong
    OPTICS EXPRESS, 2018, 26 (02): : 1633 - 1644
  • [29] Coherent and tunable light radiation from nanoscale surface plasmons array via an exotic Smith-Purcell effect
    Liu, Weihao
    OPTICS LETTERS, 2015, 40 (20) : 4579 - 4582
  • [30] Surface-plasmons lasing in double-graphene-layer structures
    Dubinov, A. A.
    Aleshkin, V. Ya
    Ryzhii, V.
    Shur, M. S.
    Otsuji, T.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)