Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

被引:17
|
作者
Nazem-Zadeh, Mohammad-Reza [1 ,2 ,3 ]
Saksena, Sona [4 ]
Babajani-Fermi, Abbas [4 ,5 ]
Jiang, Quan [3 ]
Soltanian-Zadeh, Hamid [1 ,4 ,6 ]
Rosenblum, Mark [5 ]
Mikkelsen, Tom [7 ]
Jain, Rajan [4 ,7 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Control & Intelligent Proc Ctr Excellence, Tehran 14399, Iran
[2] Univ Michigan, Dept Radiat Oncol & Radiol, Ann Arbor, MI 48109 USA
[3] Henry Ford Hlth Syst, Dept Neurol, Detroit, MI 48202 USA
[4] Henry Ford Hlth Syst, Dept Radiol, Detroit, MI 48202 USA
[5] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[6] Wayne State Univ, Dept Radiol, Detroit, MI 48202 USA
[7] Henry Ford Hlth Syst, Dept Neurosurg, Detroit, MI 48202 USA
来源
BMC MEDICAL IMAGING | 2012年 / 12卷
关键词
Corpus callosum; Fiber bundle segmentation; Level-set; Glioblastoma; Diffusion tensor imaging; LEVEL SET; MRI; MICROSTRUCTURE; FRAMEWORK; FIELD;
D O I
10.1186/1471-2342-12-10
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods: Nineteen patients with histologically confirmed treatment naive glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results: Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions: The proposed method and similarity measure segment corpus callosum by propagating a hypersurface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A comparative diffusion tensor imaging study of corpus callosum subregion integrity in bipolar disorder and schizophrenia
    Li, Jian
    Edmiston, Elliot Kale
    Chen, Kaiyuan
    Tang, Yanqing
    Ouyang, Xuan
    Jiang, Yifeng
    Fan, Guoguang
    Ren, Ling
    Liu, Jie
    Zhou, Yifang
    Jiang, Wenyan
    Liu, Zhening
    Xu, Ke
    Wang, Fei
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2014, 221 (01) : 58 - 62
  • [42] Divergence Map from Diffusion Tensor Imaging: Concepts and Application to Corpus Callosum
    Pinheiro, Gustavo R.
    Soares, Guilherme S.
    Costa, Andre Luis
    Lotufo, Roberto A.
    Rittner, Leticia
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1120 - 1123
  • [43] Secondary white matter degeneration of the corpus callosum in patients with intractable temporal lobe epilepsy: A diffusion tensor imaging study
    Kim, Hyunmi
    Piao, Zhe
    Liu, Ping
    Bingaman, William
    Diehl, Beate
    EPILEPSY RESEARCH, 2008, 81 (2-3) : 136 - 142
  • [44] Diffusion Tensor Imaging, White Matter Lesions, the Corpus Callosum, and Gait in the Elderly
    Bhadelia, Refeeque A.
    Price, Lori Lyn
    Tedesco, Kurtis L.
    Scott, Tammy
    Qiu, Wei Qiao
    Patz, Samuel
    Folstein, Marshal
    Rosenberg, Irwin
    Caplan, Louis R.
    Bergethon, Peter
    STROKE, 2009, 40 (12) : 3816 - 3820
  • [45] Age-related degeneration of corpus callosum measured with diffusion tensor imaging
    Ota, Miho
    Obata, Takayuki
    Akine, Yoshihide
    Ito, Hiroshi
    Ikehira, Hiroo
    Asada, Takashi
    Suhara, Tetsuya
    NEUROIMAGE, 2006, 31 (04) : 1445 - 1452
  • [46] Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children
    Hasan, Khader M.
    Molfese, David L.
    Walimuni, Indika S.
    Stuebing, Karla K.
    Papanicolaou, Andrew C.
    Narayana, Ponnada A.
    Fletcher, Jack M.
    NMR IN BIOMEDICINE, 2012, 25 (11) : 1263 - 1270
  • [47] Tractography of the Spider Monkey (Ateles geoffroyi) Corpus Callosum Using Diffusion Tensor Magnetic Resonance Imaging
    Platas-Neri, Diana
    Hidalgo-Tobon, Silvia
    da Celis Alonso, Benito
    Chico-Ponce de Leon, Fernando
    Munoz-Delgado, Jairo
    Phillips, Kimberley A.
    PLOS ONE, 2015, 10 (02):
  • [48] Detecting abnormalities of corpus callosum connectivity in autism using magnetic resonance imaging and diffusion tensor tractography
    Hong, Shanshan
    Ke, Xiaoyan
    Tang, Tianyu
    Hang, Yueyue
    Chu, Kangkang
    Huang, Haiqing
    Ruan, Zongcai
    Lu, Zuhong
    Tao, Guotai
    Liu, Yijun
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2011, 194 (03) : 333 - 339
  • [49] Segmentation and Analysis of Corpus Callosum in Autistic MR Brain Images Using Reaction Diffusion Level Sets
    Fredo, A. R. Jac
    Kavitha, G.
    Ramakrishnan, S.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (04) : 737 - 741
  • [50] Diffusion tensor quantification of the macrostructure and microstructure of human midsagittal corpus callosum across the lifespan
    Hasan, Khader M.
    Ewing-Cobbs, Linda
    Kramer, Larry A.
    Fletcher, Jack M.
    Narayana, Ponnada A.
    NMR IN BIOMEDICINE, 2008, 21 (10) : 1094 - 1101