Rolled-up 1.55 μm Semiconductor Quantum Dot Tube Lasers

被引:0
作者
Mi, Z. [1 ]
Bianucci, P. [1 ]
Tavakoli-Dastjerdi, M. H. [1 ]
Mukherjee, S. [1 ]
Djavid, M. [1 ]
Poole, P. J. [2 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
[2] CNR, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
来源
NANOSCALE LUMINESCENT MATERIALS 2 | 2012年 / 45卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
INGAAS/GAAS; MICROTUBES; EMISSION;
D O I
10.1149/1.3700417
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report on the fabrication and characterization of InGaAsP/InAs quantum dot rolled-up tubes as well as the achievement of a semiconductor tube laser at similar to 1.55 mu m. The optically pumped tube laser operates in continuous wave at liquid nitrogen temperature and shows an ultra-low threshold of similar to 1.26 mu W.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 40 条
  • [21] 1.55 μm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
    Zhang, Z. Y.
    Oehler, A. E. H.
    Resan, B.
    Kurmulis, S.
    Zhou, K. J.
    Wang, Q.
    Mangold, M.
    Sueedmeyer, T.
    Keller, U.
    Weingarten, K. J.
    Hogg, R. A.
    SCIENTIFIC REPORTS, 2012, 2
  • [22] Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers
    Chusseau, Laurent
    Philippe, Fabrice
    Disanto, Filippo
    OPTICS EXPRESS, 2014, 22 (05): : 5312 - 5324
  • [23] Adiabatic Design of Micropillar Cavities for 1.55-μm Quantum-dot Single-photon Sources
    Song, Hai-Zhi
    Yu, Libo
    Wang, Zhiming M.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 2162 - 2169
  • [24] Pulse Broadening in Quantum-Dot Mode-Locked Semiconductor Lasers: Simulation, Analysis, and Experiments
    Radziunas, Mindaugas
    Vladimirov, Andrei G.
    Viktorov, Evgeny A.
    Fiol, Gerrit
    Schmeckebier, Holger
    Bimberg, Dieter
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (07) : 935 - 943
  • [25] Numerical design and investigation of an optically pumped 1.55 μm single quantum dot photonic crystal-based laser
    Eivazi, Sonia
    Mozaffari, Mohammad Hazhir
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2018, 32 : 42 - 46
  • [26] Measurement of Linewidth Enhancement Factor for 1.3-μm InAs/GaAs Quantum Dot Lasers
    Xiao, Jin-Long
    Guo, Chu-Cai
    Ji, Hai-Ming
    Xu, Peng-Fei
    Yao, Qi-Feng
    Lv, Xiao-Meng
    Zou, Ling-Xiu
    Long, Heng
    Yang, Tao
    Huang, Yong-Zhen
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (05) : 488 - 491
  • [27] Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths
    Zhang, Lei
    Zhang, Yu
    Kershaw, Steve V.
    Zhao, Yanhui
    Wang, Yu
    Jiang, Yongheng
    Zhang, Tieqiang
    Yu, William W.
    Gu, Pengfei
    Wang, Yiding
    Zhang, Hanzhuang
    Rogach, Andrey L.
    NANOTECHNOLOGY, 2014, 25 (10)
  • [28] Quantum dot active regions for extended wavelength (1.0 μm to 1.3 μm) GaAs-based heterostructure lasers and vertical cavity surface emitting lasers
    Huffaker, DL
    Park, G
    Zou, Z
    Shchekin, OB
    Deppe, DG
    PHOTONICS TECHNOLOGY INTO THE 21ST CENTURY: SEMICONDUCTORS, MICROSTRUCTURES, AND NANOSTRUCTURES, 1999, 3899 : 134 - 146
  • [29] Impact of optical gain broadening on characteristics of response function in the presence and absence of tunnelling injection for quantum dot semiconductor lasers
    Kia, Yasin Yekta
    Rajaei, Esfandiar
    PRAMANA-JOURNAL OF PHYSICS, 2017, 89 (03):
  • [30] Temperature dependence of electroabsorption dynamics in an InAs quantum-dot saturable absorber at 1.3 μm and its impact on mode-locked quantum-dot lasers
    Cataluna, M. A.
    Malins, D. B.
    Gomez-Iglesias, A.
    Sibbett, W.
    Miller, A.
    Rafailov, E. U.
    APPLIED PHYSICS LETTERS, 2010, 97 (12)