On higher eta-invariants and metrics of positive scalar curvature

被引:26
作者
Leichtnam, E
Piazza, P
机构
[1] Inst Jussieu Chevaleret, F-75013 Paris, France
[2] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
关键词
bordism groups; positive scalar curvature metrics; Galois coverings; higher eta-invariants; higher rho-invariants; b-pseudodifferential calculus; higher APS index formula;
D O I
10.1023/A:1014079307698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a closed connected spin manifold admitting one metric of positive scalar curvature. In this paper we use the higher eta-invariant associated to the Dirac operator on N in order to distinguish metrics of positive scalar curvature on N. In particular, we give sufficient conditions, involving pi(1)(N) and dim N, for N to admit an infinite number of metrics of positive scalar curvature that are nonbordant.
引用
收藏
页码:341 / 359
页数:19
相关论文
共 33 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[3]  
ATIYAH MF, 1971, ANN MATH, V93, P139
[4]   THE ETA-INVARIANT AND METRICS OF POSITIVE SCALAR CURVATURE [J].
BOTVINNIK, B ;
GILKEY, PB .
MATHEMATISCHE ANNALEN, 1995, 302 (03) :507-517
[5]   A K-THEORETIC RELATIVE INDEX THEOREM AND CALLIAS-TYPE DIRAC OPERATORS [J].
BUNKE, U .
MATHEMATISCHE ANNALEN, 1995, 303 (02) :241-279
[6]   THE CYCLIC HOMOLOGY OF THE GROUP-RINGS [J].
BURGHELEA, D .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) :354-365
[7]  
CONNES A, PUBL IHES, V62, P41
[8]   Splitting of the family index [J].
Dai, XZ ;
Zhang, WP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) :303-317
[9]   Higher spectral flow [J].
Dai, XZ ;
Zhang, WP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (02) :432-469
[10]  
Gromov M., 1983, PUBL MATH I HAUTES E, V58, P83