On the Motion of Vortex Sheets with Surface Tension in Three-Dimensional Euler Equations with Vorticity

被引:40
作者
Cheng, Ching-Hsiao Arthur [1 ]
Coutand, Daniel [3 ]
Shkoller, Steve [2 ]
机构
[1] Univ Maryland, CSCAMM, College Pk, MD 20740 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Heriot Watt Univ, Sch Math & Comp Sci MACS, Edinburgh EH14 4AS, Midlothian, Scotland
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1002/cpa.20240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1715 / 1752
页数:38
相关论文
共 8 条
[1]  
Ambrose DM, 2007, COMMUN MATH SCI, V5, P391
[2]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[3]   Well-posedness of vortex sheets with surface tension [J].
Ambrose, DM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) :211-244
[4]  
[Anonymous], 1984, APPL MATH SCI
[5]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[6]   L2-regularity theory of linear strongly elliptic Dirichlet systems of order 2m with minimal regularity in the coefficients [J].
Ebenfeld, S .
QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (03) :547-576
[7]  
Shatah J., 2006, ARXIVMATH0608428
[8]  
Temam R., 1984, STUDIES MATH ITS APP, V2