On the small-weight codewords of some Hermitian codes

被引:9
作者
Marcolla, Chiara [1 ]
Pellegrini, Marco [2 ]
Sala, Massimiliano [1 ]
机构
[1] Univ Trento, Dept Math, Trento, Italy
[2] Univ Florence, Dept Math, I-50121 Florence, Italy
关键词
Affine-variety code; Hamming weight; Hermitian code; Hermitian curve; Linear code; Minimum-weight words;
D O I
10.1016/j.jsc.2015.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any affine-variety code we show how to construct an ideal whose solutions correspond to codewords with any assigned weight. We are able to obtain geometric characterizations for small-weight codewords for some families of Hermitian codes over any Fe. From these geometric characterizations, we obtain explicit formulas. In particular, we determine the number of minimum-weight codewords for all Hermitian codes with d <= q and all second-weight codewords for distance-3,4 codes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 29 条
  • [1] Augot D., 1996, Finite Fields and their Applications, V2, P138, DOI 10.1006/ffta.1996.0009
  • [2] On the geometry of Hermitian one-point codes
    Ballico, Edoardo
    Ravagnani, Alberto
    [J]. JOURNAL OF ALGEBRA, 2014, 397 : 499 - 514
  • [3] Bosma W., 1997, COMPUTATIONAL ALGEBR
  • [4] The dual minimum distance of arbitrary-dimensional algebraic-geometric codes
    Couvreur, Alain
    [J]. JOURNAL OF ALGEBRA, 2012, 350 (01) : 84 - 107
  • [5] De Boer M., 1999, SOME TAPAS COMPUTER, P237
  • [6] Decoding Affine Variety Codes Using Gröbner Bases
    Fitzgerald J.
    Lax R.F.
    [J]. Designs, Codes and Cryptography, 1998, 13 (2) : 147 - 158
  • [7] Fontanari C., 2015, INT J PURE APPL MATH, V98, P303
  • [8] Geil O, 2008, SER CODING THEORY CR, V5, P153
  • [9] Goppa V. D., 1981, SOV MATH DOKL, V24, P170
  • [10] Goppa V.D., 1988, MATH APPL SOV SER, V24