Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

被引:1
作者
Dione, Ibrahima [1 ]
Doyon, Nicolas [1 ]
Deteix, Jean [1 ]
机构
[1] Univ Laval, GIREF, Dept Math & Stat, Pavillon Vachon,1045 Ave Med, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electrodiffusion; Finite elements; Ionic concentrations; Node of Ranvier; Sensitivity equation method; AUTOMATIC DIFFERENTIATION; DIELECTRIC-CONSTANT; TIME BEHAVIOR; EXISTENCE; SYSTEMS;
D O I
10.1007/s00285-018-1266-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst-Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.
引用
收藏
页码:21 / 56
页数:36
相关论文
共 50 条
  • [1] Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Ibrahima Dione
    Nicolas Doyon
    Jean Deteix
    Journal of Mathematical Biology, 2019, 78 : 21 - 56
  • [2] Numerical Aspects of Electrodiffusion Problem Based on Nernst-Planck and Poisson Equations
    Fausek, Janusz
    Szyszkiewicz, Krzysztof
    Filipek, R.
    DIFFUSION IN MATERIALS - DIMAT 2011, 2012, 323-325 : 81 - 86
  • [3] Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations
    Jasielec, J. J.
    Filipek, R.
    Szyszkiewicz, K.
    Fausek, J.
    Danielewski, M.
    Lewenstam, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 : 75 - 90
  • [4] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Hao, Tingting
    Ma, Manman
    Xu, Xuejun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [5] An extended finite element method for the Nernst-Planck-Poisson equations
    Kumar, Pawan
    Swaminathan, Narasimhan
    Natarajan, Sundararajan
    SOLID STATE IONICS, 2024, 410
  • [6] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [7] A stabilized finite volume element method for solving Poisson-Nernst-Planck equations
    Li, Jiao
    Ying, Jinyong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2022, 38 (01)
  • [8] A conservative finite difference scheme for Poisson–Nernst–Planck equations
    Allen Flavell
    Michael Machen
    Bob Eisenberg
    Julienne Kabre
    Chun Liu
    Xiaofan Li
    Journal of Computational Electronics, 2014, 13 : 235 - 249
  • [9] Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer
    Lim, Jongil
    Whitcomb, John
    Boyd, James
    Varghese, Julian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 305 (01) : 159 - 174
  • [10] A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations
    Gao, Huadong
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 793 - 817