The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells

被引:79
|
作者
Alink, R. [1 ]
Haussmann, J. [2 ]
Markoetter, H. [3 ]
Schwager, M. [1 ]
Manke, I. [3 ]
Gerteisen, D. [1 ]
机构
[1] Fraunhofer ISE, D-79110 Freiburg, Germany
[2] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, D-89081 Ulm, Germany
[3] Helmholtz Zentrum Berlin HZB, D-14109 Berlin, Germany
关键词
PEM fuel cell; Water management; Perforation; Gas diffusion layer; Synchrotron visualization; ESEM; GAS-DIFFUSION LAYERS; DEGRADATION MECHANISMS; LASER PERFORATION; MASS-TRANSPORT; CATHODE; MEDIA; VISUALIZATION; PERFORMANCE; GDL; DURABILITY;
D O I
10.1016/j.jpowsour.2013.01.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the influence of modifications of the porous transport layer (PTL) on the water management in polymer electrolyte membrane fuel cells is investigated. Laser perforation and milling are used to locally remove either the whole PTL or only the micro porous layer in the PTL. The changed liquid water distribution is visualized using synchrotron radiography and ESEM liquid water imaging. The observed effects are correlated with in-situ performance characteristics, pre-assembly and post-mortem analysis to examine on the beneficial and obstructive effects of the modifications. The analysis reveals that laser-perforation results in PTFE loss and hydrophilic regions which results in a good performance at dry conditions but serious flooding at high humidification conditions. Machined perforations show beneficial effects in the in-situ performance characteristics at high humidification conditions. A draining of the vicinity of the perforations is observed which results in an improved oxygen diffusivity. Water balancing and synchrotron visualization indicate that under the analyzed operating conditions the MPL increases the humidification of the ionomer on the one hand but creates an additional diffusion barrier by liquid water in the interface between the cathode catalyst layer and the MPL on the other hand. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [41] Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells
    Pasaogullari, U
    Wang, CY
    ELECTROCHIMICA ACTA, 2004, 49 (25) : 4359 - 4369
  • [42] Porous metal materials for polymer electrolyte membrane fuel cells - A review
    Yuan, Wei
    Tang, Yong
    Yang, Xiaojun
    Wan, Zhenping
    APPLIED ENERGY, 2012, 94 : 309 - 329
  • [43] Design of Experiments to Evaluate Material Characteristics of Porous Transport Layers in Polymer Electrolyte Membrane Fuel Cells
    Flick, S.
    Merida, W.
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 843 - 855
  • [44] On the role of porous transport layer thickness in polymer electrolyte water electrolysis
    Weber, Carl Cesar
    Schuler, Tobias
    De Bruycker, Ruben
    Gubler, Lorenz
    Buechi, Felix N.
    De Angelis, Salvatore
    JOURNAL OF POWER SOURCES ADVANCES, 2022, 15
  • [45] Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell
    Hao, Liang
    Cheng, Ping
    JOURNAL OF POWER SOURCES, 2010, 195 (12) : 3870 - 3881
  • [46] Effects of catalyst layer structure and wettability on liquid water transport in polymer electrolyte membrane fuel cell
    Das, Prodip K.
    Li, Xianguo
    Xie, Zhong
    Liu, Zhong-Sheng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (15) : 1325 - 1339
  • [47] Effect of channel-rib width on water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells
    Jeon, Dong Hyup
    JOURNAL OF POWER SOURCES, 2019, 423 : 280 - 289
  • [48] The effect of diffusioosmosis on water transport in polymer electrolyte fuel cells
    Keh, Huan J.
    Ma, Hsien Chen
    JOURNAL OF POWER SOURCES, 2008, 180 (02) : 711 - 718
  • [49] Hybrid materials for polymer electrolyte membrane fuel cells: Water uptake, mechanical and transport properties
    Di Vona, M. L.
    Marani, D.
    D'Epifanio, A.
    Licoccia, S.
    Beurroies, I.
    Denoyel, R.
    Knauth, P.
    JOURNAL OF MEMBRANE SCIENCE, 2007, 304 (1-2) : 76 - 81
  • [50] Water Management in Polymer Electrolyte Fuel Cells through Asymmetric Thermal and Mass Transport Engineering of the Micro-Porous Layers
    Gandomi, Yasser Ashraf
    Edmundson, M. D.
    Busby, F. C.
    Mench, Matthew M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : F933 - F944