The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells

被引:79
|
作者
Alink, R. [1 ]
Haussmann, J. [2 ]
Markoetter, H. [3 ]
Schwager, M. [1 ]
Manke, I. [3 ]
Gerteisen, D. [1 ]
机构
[1] Fraunhofer ISE, D-79110 Freiburg, Germany
[2] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, D-89081 Ulm, Germany
[3] Helmholtz Zentrum Berlin HZB, D-14109 Berlin, Germany
关键词
PEM fuel cell; Water management; Perforation; Gas diffusion layer; Synchrotron visualization; ESEM; GAS-DIFFUSION LAYERS; DEGRADATION MECHANISMS; LASER PERFORATION; MASS-TRANSPORT; CATHODE; MEDIA; VISUALIZATION; PERFORMANCE; GDL; DURABILITY;
D O I
10.1016/j.jpowsour.2013.01.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the influence of modifications of the porous transport layer (PTL) on the water management in polymer electrolyte membrane fuel cells is investigated. Laser perforation and milling are used to locally remove either the whole PTL or only the micro porous layer in the PTL. The changed liquid water distribution is visualized using synchrotron radiography and ESEM liquid water imaging. The observed effects are correlated with in-situ performance characteristics, pre-assembly and post-mortem analysis to examine on the beneficial and obstructive effects of the modifications. The analysis reveals that laser-perforation results in PTFE loss and hydrophilic regions which results in a good performance at dry conditions but serious flooding at high humidification conditions. Machined perforations show beneficial effects in the in-situ performance characteristics at high humidification conditions. A draining of the vicinity of the perforations is observed which results in an improved oxygen diffusivity. Water balancing and synchrotron visualization indicate that under the analyzed operating conditions the MPL increases the humidification of the ionomer on the one hand but creates an additional diffusion barrier by liquid water in the interface between the cathode catalyst layer and the MPL on the other hand. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [21] Modeling of ion and water transport in the polymer electrolyte membrane of PEM fuel cells
    Baschuk, J. J.
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5095 - 5103
  • [22] Effect of Microstructure of Porous Transport Layer on Performance in Polymer Electrolyte Membrane Water Electrolyser
    Majasan, Jude O.
    Iacoviello, Francesco
    Shearing, Paul R.
    Brett, Dan J. L.
    3RD ANNUAL CONFERENCE IN ENERGY STORAGE AND ITS APPLICATIONS (3RD CDT-ESA-AC), 2018, 151 : 111 - 119
  • [23] Effect of the Micro-Porous Layer-Gas Diffusion Layer Interface on Water Transport in Polymer Electrolyte Fuel Cells
    Preston, Joshua
    Fu, Richard
    Zhang, Xiaoyu
    Pasaogullari, Ugur
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 113 - 119
  • [24] Numerical Simulation of Liquid Water Transport in a Multiperforated Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
    Yin, Bifeng
    Zhang, Xu
    Xu, Sheng
    Xie, Xuan
    Dong, Fei
    JOURNAL OF ENERGY ENGINEERING, 2023, 149 (02)
  • [25] Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells
    Jeon, Dong Hyup
    JOURNAL OF POWER SOURCES, 2020, 475 (475)
  • [26] The impact of rib structure on the water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells
    Jeon, Dong Hyup
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (03) : 755 - 767
  • [27] Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer
    Liu, Chang
    Shviro, Meital
    Bender, Guido
    Gago, Aldo S.
    Morawietz, Tobias
    Dzara, Michael J.
    Biswas, Indro
    Gazdzicki, Pawel
    Kang, Zhenye
    Zaccarine, Sarah F.
    Pylypenko, Svitlana
    Friedrich, K. Andreas
    Carmo, Marcelo
    Lehnert, Werner
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [28] Understanding porous water-transport plates in polymer-electrolyte fuel cells
    Weber, Adam Z.
    Darling, Robert M.
    JOURNAL OF POWER SOURCES, 2007, 168 (01) : 191 - 199
  • [29] Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells
    Bae, Insung
    Oh, Keun-Hwan
    Yun, Sung-Hyun
    Kim, Hyuk
    JOURNAL OF MEMBRANE SCIENCE, 2017, 542 : 52 - 59
  • [30] Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network
    Alink, Robert
    Gerteisen, Dietmar
    ENERGIES, 2013, 6 (09): : 4508 - 4530