Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images

被引:68
作者
Li, Wei [1 ,2 ]
Cao, Peng [1 ,2 ]
Zhao, Dazhe [1 ,2 ]
Wang, Junbo [3 ]
机构
[1] Northeastern Univ, Minist Educ, Med Image Comp Lab, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Comp Sci & Engn, Shenyang 110819, Peoples R China
[3] Neusoft Corp, Neusoft Res Inst, Shenyang 110179, Peoples R China
基金
中国国家自然科学基金;
关键词
AIDED DIAGNOSTIC SCHEME; LUNG NODULES; CT; REDUCTION; CANCER; MTANN;
D O I
10.1155/2016/6215085
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computer aided detection (CAD) systems can assist radiologists by offering a second opinion on early diagnosis of lung cancer. Classification and feature representation play critical roles in false-positive reduction (FPR) in lung nodule CAD. We design a deep convolutional neural networks method for nodule classification, which has an advantage of autolearning representation and strong generalization ability. A specified network structure for nodule images is proposed to solve the recognition of three types of nodules, that is, solid, semisolid, and ground glass opacity (GGO). Deep convolutional neural networks are trained by 62,492 regions-of-interest (ROIs) samples including 40,772 nodules and 21,720 nonnodules from the Lung Image Database Consortium (LIDC) database. Experimental results demonstrate the effectiveness of the proposed method in terms of sensitivity and overall accuracy and that it consistently outperforms the competing methods.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
[Anonymous], INT J SCI ENG RES
[2]  
[Anonymous], HDB BRAIN THEORY NEU
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Benefits and Harms of CT Screening for Lung Cancer A Systematic Review [J].
Bach, Peter B. ;
Mirkin, Joshua N. ;
Oliver, Thomas K. ;
Azzoli, Christopher G. ;
Berry, Donald A. ;
Brawley, Otis W. ;
Byers, Tim ;
Colditz, Graham A. ;
Gould, Michael K. ;
Jett, James R. ;
Sabichi, Anita L. ;
Smith-Bindman, Rebecca ;
Wood, Douglas E. ;
Qaseem, Amir ;
Detterbeck, Frank C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (22) :2418-2429
[5]   Automatic segmentation of lung nodules with growing neural gas and support vector machine [J].
Barros Netto, Stelmo Magalhaes ;
Silva, Aristofanes Correa ;
Nunes, Rodolfo Acatauassu ;
Gattass, Marcelo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (11) :1110-1121
[6]  
Cao P, 2013, COMP MED SY, P173, DOI 10.1109/CBMS.2013.6627784
[7]   Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images [J].
Chang, Chuan-Yu ;
Chen, Shao-Jer ;
Tsai, Ming-Fong .
PATTERN RECOGNITION, 2010, 43 (10) :3494-3506
[8]  
Farag A, 2010, LECT NOTES COMPUT SC, V6455, P79
[9]   Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system [J].
Gurcan, MN ;
Sahiner, B ;
Petrick, N ;
Chan, HP ;
Kazerooni, EA ;
Cascade, PN ;
Hadjiiski, L .
MEDICAL PHYSICS, 2002, 29 (11) :2552-2558
[10]   Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules [J].
Han, Fangfang ;
Wang, Huafeng ;
Zhang, Guopeng ;
Han, Hao ;
Song, Bowen ;
Li, Lihong ;
Moore, William ;
Lu, Hongbing ;
Zhao, Hong ;
Liang, Zhengrong .
JOURNAL OF DIGITAL IMAGING, 2015, 28 (01) :99-115