First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons

被引:25
|
作者
Kuloglu, A. F. [1 ]
Sarikavak-Lisesivdin, B. [1 ]
Lisesivdin, S. B. [1 ]
Ozbay, E. [2 ,3 ]
机构
[1] Gazi Univ, Fac Sci, Dept Phys, TR-06500 Ankara, Turkey
[2] Bilkent Univ, Nanotechnol Res Ctr, TR-06800 Bilkent, Turkey
[3] Bilkent Univ, Dept Phys, Dept Elect & Elect Engn, TR-06800 Bilkent, Turkey
关键词
Palladium; Termination; Passivation; Graphene; GNR; Nanoribbon; PALLADIUM DECORATED GRAPHENE; ELECTRONIC-PROPERTIES; AB-INITIO; ADSORPTION; DENSITY; STATES; FILMS;
D O I
10.1016/j.commatsci.2012.10.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of Palladium (Pd) termination on the electronic properties of armchair graphene nanoribbons (AGNRs) were calculated by using ab initio calculations. After a geometric optimization process, the electronic band structures, density of states, and binding energies of AGNRs with N-a = 5-15 were calculated. Pd-termination was found to significantly influence the electronic properties of AGNRs. In DOS, many Q0D and Q1D type states were observed. Binding energy (BE) for single-side or both-side Pd-terminated structures represents characteristic drops with the increasing GNR width. With the increasing GNR width, the BEs of these structures become similar to hydrogenated structures. Because of the GNR width, dependent BE also gave information on the possible stiffness information, in which all of this information can be used in studies where controlled binding to graphene is required. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 50 条
  • [31] First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies
    Song, Yu-Ling
    Zhang, Yan
    Zhang, Jian-Min
    Lu, Dao-Bang
    Xu, Ke-Wei
    JOURNAL OF MOLECULAR STRUCTURE, 2011, 990 (1-3) : 75 - 78
  • [32] First-principles study of the F-terminated Boron Nitride nanoribbons
    Lu, Dao-Bang
    Song, Yu-Ling
    Tian, Yan
    Xu, Hai-Ru
    Lu, Zhi-Wen
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2012, 979 : 49 - 53
  • [33] A first-principles study on the electronic and magnetic properties of armchair SiC/AlN nanoribbons
    Du, Xiu-Juan
    Chen, Zheng
    Zhang, Jing
    Ning, Zhao-Rong
    Fan, Xiao-Li
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 586 : 176 - 179
  • [34] Doping effects on the electronic properties of armchair phosphorene nanoribbons: A first-principles study
    Zhou, Wenzhe
    Zou, Hui
    Xiong, Xiang
    Zhou, Yu
    Liu, Rutie
    Ouyang, Fangping
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 94 : 53 - 58
  • [35] A First-Principles Study on Edge Doping of Armchair Graphene Nanoribbon
    Lam, Kai Tak
    Liang, Gengchiau
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 109 - 111
  • [36] Half-metallicity in armchair boron nitride nanoribbons: A first-principles study
    Rai, Hari Mohan
    Saxena, Shailendra K.
    Mishra, Vikash
    Late, Ravikiran
    Kumar, Rajesh
    Sagdeo, Pankaj R.
    Jaiswal, Neeraj K.
    Srivastava, Pankaj
    SOLID STATE COMMUNICATIONS, 2015, 212 : 19 - 24
  • [37] First-principles calculations of electrical conductivities of edge-modified graphene nanoribbons: Strain effect
    Prabhakar, Sanjay
    Melnik, Roderick
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 142
  • [38] Distinguishing different edge structures of graphene nanoribbons with Raman spectra, studied by first-principles calculations
    Yan, Kun
    Li, Zhibing
    Wang, Weiliang
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (06) : 1062 - 1069
  • [39] Vibrational properties and Raman spectra of different edge graphene nanoribbons, studied by first-principles calculations
    Hu, Ting
    Zhou, Jian
    Dong, Jinming
    PHYSICS LETTERS A, 2013, 377 (05) : 399 - 404
  • [40] Stable and metallic borophene nanoribbons from first-principles calculations
    Liu, Yunxia
    Dong, Yao-Jun
    Tang, Zeyuan
    Wang, Xue-Feng
    Wang, Lu
    Hou, Tingjun
    Lin, Haiping
    Li, Youyong
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (26) : 6380 - 6385