First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons

被引:25
|
作者
Kuloglu, A. F. [1 ]
Sarikavak-Lisesivdin, B. [1 ]
Lisesivdin, S. B. [1 ]
Ozbay, E. [2 ,3 ]
机构
[1] Gazi Univ, Fac Sci, Dept Phys, TR-06500 Ankara, Turkey
[2] Bilkent Univ, Nanotechnol Res Ctr, TR-06800 Bilkent, Turkey
[3] Bilkent Univ, Dept Phys, Dept Elect & Elect Engn, TR-06800 Bilkent, Turkey
关键词
Palladium; Termination; Passivation; Graphene; GNR; Nanoribbon; PALLADIUM DECORATED GRAPHENE; ELECTRONIC-PROPERTIES; AB-INITIO; ADSORPTION; DENSITY; STATES; FILMS;
D O I
10.1016/j.commatsci.2012.10.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of Palladium (Pd) termination on the electronic properties of armchair graphene nanoribbons (AGNRs) were calculated by using ab initio calculations. After a geometric optimization process, the electronic band structures, density of states, and binding energies of AGNRs with N-a = 5-15 were calculated. Pd-termination was found to significantly influence the electronic properties of AGNRs. In DOS, many Q0D and Q1D type states were observed. Binding energy (BE) for single-side or both-side Pd-terminated structures represents characteristic drops with the increasing GNR width. With the increasing GNR width, the BEs of these structures become similar to hydrogenated structures. Because of the GNR width, dependent BE also gave information on the possible stiffness information, in which all of this information can be used in studies where controlled binding to graphene is required. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 50 条
  • [1] First principles study of Li terminated armchair graphene nanoribbons
    Tyagi, Neha
    Jaiswal, Neeraj K.
    Srivastava, Pankaj
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (06) : 2241 - 2246
  • [2] First-Principles Calculations on Lateral Heterostructures of Armchair Graphene Antidot Nanoribbons for Band Alignment
    Zhang, Shenghui
    Chen, Haiyuan
    Hu, Jie
    Zhao, Xuhong
    Niu, Xiaobin
    ACS APPLIED NANO MATERIALS, 2022, 5 (04) : 5699 - 5708
  • [3] First-Principles Investigation of Pd-Doped Armchair Graphene Nanoribbons as a Potential Rectifier
    Kharwar, Saurabh
    Singh, Sangeeta
    Jaiswal, Neeraj K.
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (03) : 1196 - 1206
  • [4] First-Principles Investigation of Pd-Doped Armchair Graphene Nanoribbons as a Potential Rectifier
    Saurabh Kharwar
    Sangeeta Singh
    Neeraj K. Jaiswal
    Journal of Electronic Materials, 2021, 50 : 1196 - 1206
  • [5] Resonant Raman in armchair graphene nanoribbons from first-principles
    Sheremetyeva, Natalya
    Lamparski, Michael
    Liang, Liangbo
    Barin, Gabriela Borin
    Meunier, Vincent
    CARBON, 2024, 270
  • [6] First-principles calculations of the optical response of single-layer and bilayer armchair graphene nanoribbons
    Ge, Yijun
    Fisher, Timothy S.
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [7] First principles calculations of armchair graphene nanoribbons interacting with Cu atoms
    Jaiswal, Neeraj K.
    Srivastava, Pankaj
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 44 (01): : 75 - 79
  • [8] First-principles study of edge-modified armchair graphene nanoribbons
    Jippo, Hideyuki
    Ohfuchi, Mari
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (18)
  • [9] Vibrational properties of graphene nanoribbons by first-principles calculations
    Gillen, Roland
    Mohr, Marcel
    Thomsen, Christian
    Maultzsch, Janina
    PHYSICAL REVIEW B, 2009, 80 (15):
  • [10] First-principles investigation of armchair stanene nanoribbons
    Fadaie, M.
    Shahtahmassebi, N.
    Roknabad, M. R.
    Gulseren, O.
    PHYSICS LETTERS A, 2018, 382 (04) : 180 - 185