Birth of strange nonchaotic attractors in a piecewise linear oscillator

被引:11
作者
Duan, Jicheng [1 ]
Zhou, Wei [2 ]
Li, Denghui [3 ]
Grebogi, Celso [4 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Gansu, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Decis & Game Theory, Lanzhou 730070, Gansu, Peoples R China
[3] Hexi Univ, Sch Math & Stat, Zhangye 734000, Gansu, Peoples R China
[4] Univ Aberdeen, Inst Complex Syst & Math Biol, Kings Coll, Aberdeen AB24 3UE, Scotland
基金
中国国家自然科学基金;
关键词
DIMENSIONS; ROUTE;
D O I
10.1063/5.0096959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonsmooth systems are widely encountered in engineering fields. They have abundant dynamical phenomena, including some results on the complex dynamics in such systems under quasiperiodically forced excitations. In this work, we consider a quasiperiodically forced piecewise linear oscillator and show that strange nonchaotic attractors (SNAs) do exist in such nonsmooth systems. The generation and evolution mechanisms of SNAs are discussed. The torus-doubling, fractal, bubbling, and intermittency routes to SNAs are identified. The strange properties of SNAs are characterized with the aid of the phase sensitivity function, singular continuous spectrum, rational frequency approximation, and the path of the partial Fourier sum of state variables in a complex plane. The nonchaotic properties of SNAs are verified by the methods of maximum Lyapunov exponent and power spectrum.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Mathematical modeling and experimental investigation of an embedded vibro-impact system [J].
Aguiar, R. R. ;
Weber, H. I. .
NONLINEAR DYNAMICS, 2011, 65 (03) :317-334
[2]   Strange nonchaotic attractors for computation [J].
Aravindh, M. Sathish ;
Venkatesan, A. ;
Lakshmanan, M. .
PHYSICAL REVIEW E, 2018, 97 (05)
[3]   INFINITE NUMBER OF PARAMETER REGIONS WITH FRACTAL NONCHAOTIC ATTRACTORS IN A PIECEWISE MAP [J].
Cheng, Tao ;
Zhang, Yongxiang ;
Shen, Yunzhu .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
[4]  
Datta S, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046203
[5]   DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICS LETTERS A, 1989, 137 (4-5) :167-172
[6]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[7]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[8]  
Feudel U., 2006, STRANGE NONCHAOTIC A, P75
[9]   Non-smooth saddle-node bifurcations II: Dimensions of strange attractors [J].
Fuhrmann, G. ;
Groeger, M. ;
Jaeger, T. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 :2989-3011
[10]   Global attractors of pinched skew products [J].
Glendinning, P .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (03) :287-294