EXISTENCE AND UNIQUENESS FOR SOLUTION OF RICCI FLOW ON FINSLER MANIFOLDS

被引:17
作者
Azami, Shahroud [1 ]
Razavi, Asadollah [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
关键词
Ricci flow; Finsler manifold; Berwald metric; strictly parabolic; CURVATURE; METRICS;
D O I
10.1142/S0219887812500910
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows that the Ricci flow on Finsler manifolds with Berwald metrics cannot possibly be strictly parabolic. Then, we will define a modified flow which is strictly parabolic and by using it, we will prove the existence and uniqueness for solution of Ricci flow on Finsler manifolds.
引用
收藏
页数:21
相关论文
共 19 条
  • [1] [Anonymous], 2006, Grad. Stud. Math
  • [2] Bao D., 2007, Adv. Stud. Pure Math., V48, P19
  • [3] CHEN YG, 1991, J DIFFER GEOM, V33, P749
  • [4] Chow B., 2004, Mathematical Surveys and Monographs, V110
  • [5] DETURCK DM, 1983, J DIFFER GEOM, V18, P157
  • [6] HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS
    EELLS, J
    SAMPSON, JH
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) : 109 - &
  • [7] Evans LC, 2010, Partial Differential Equations
  • [8] HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
  • [9] HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
  • [10] Ricci flow and black holes
    Headrick, Matthew
    Wiseman, Toby
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) : 6683 - 6707