Columnar support structures for oxygen reduction electrocatalysts prepared by glancing angle deposition

被引:27
作者
Bonakdarpour, Arman [1 ]
Fleischauer, M. D. [2 ]
Brett, M. J. [2 ,3 ]
Dahn, J. R. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
[2] NRC Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Glancing angle deposition; O-2; reduction; Rotating ring-disk electrode; Catalyst support;
D O I
10.1016/j.apcata.2008.07.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Columnar titanium structures were fabricated on smooth glassy carbon (GC) disks using the glancing angle deposition (GLAD) physical vapour deposition technique. This catalyst support consists of 500 nm long posts with a nominal cross-sectional diameter of 100 nm. They have a number density of about 10 billion per cm(2) which increases the effective surface area of the GC disks by a factor of 13. Platinum films ranging from 10 to 90 nm in thickness (planar equivalent) were deposited onto these posts by magnetron sputtering. The oxygen reduction activity and H2O2 release of these electrocatalysts were measured by the rotating ring-disk electrode method in O-2-saturated 0.1 M HClO4 at room temperature. The electrochemical Surface area of the catalysts, obtained from H-upd cyclic voltammograms, is about 10-15 times higher than smooth Pt films, The supports can be fabricated from most vacuum-compatible materials and should be stable over a wide range of processing, annealing, and operating conditions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 30 条
[1]   A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Liu, Hansan ;
Lee, Kunchan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
JOURNAL OF POWER SOURCES, 2007, 173 (02) :891-908
[2]   Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1-xMx (M = Fe, Ni; 0<x<1) electrocatalysts for PEM fuel cells [J].
Bonakdarpour, A ;
Wenzel, J ;
Stevens, DA ;
Sheng, S ;
Monchesky, TL ;
Löbel, R ;
Atanasoski, RT ;
Schmoeckel, AK ;
Vernstrom, GD ;
Debe, MK ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) :A61-A72
[3]   Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction? [J].
Bonakdarpour, Arman ;
Lefevre, Michel ;
Yang, Ruizhi ;
Jaouen, Frederic ;
Dahn, Tara ;
Dodelet, Jean-Pol ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :B105-B108
[4]   Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support [J].
Bonakdarpour, Arman ;
Stevens, Krystal ;
Vernstrom, George D. ;
Atanasoski, Radoslav ;
Schmoeckel, Alison K. ;
Debe, Mark K. ;
Dahn, Jeff R. .
ELECTROCHIMICA ACTA, 2007, 53 (02) :688-694
[5]   An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells [J].
Chhina, H. ;
Campbell, S. ;
Kesler, O. .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :893-900
[6]   Effects of annealing on titanium dioxide structured films [J].
Colgan, MJ ;
Djurfors, B ;
Ivey, DG ;
Brett, MJ .
THIN SOLID FILMS, 2004, 466 (1-2) :92-96
[7]   Economical sputtering system to produce large-size composition-spread libraries having linear and orthogonal stoichiometry variations [J].
Dahn, JR ;
Trussler, S ;
Hatchard, TD ;
Bonakdarpour, A ;
Mueller-Neuhaus, JR ;
Hewitt, KC ;
Fleischauer, M .
CHEMISTRY OF MATERIALS, 2002, 14 (08) :3519-3523
[8]  
Debe M. K., 2003, HDB FUEL CELLS FUNDA, V3, P576
[9]   High voltage stability of nanostructured thin film catalysts for PEM fuel cells [J].
Debe, Mark K. ;
Schmoeckel, Alison K. ;
Vernstrorn, George D. ;
Atanasoski, Radoslav .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1002-1011
[10]   POSTDEPOSITION GROWTH OF A UNIQUELY NANOSTRUCTURED ORGANIC FILM BY VACUUM ANNEALING [J].
DEBE, MK ;
POIRIER, RJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1994, 12 (04) :2017-2022