Transcriptional Network Architecture of Breast Cancer Molecular Subtypes

被引:23
作者
de Anda-Jauregui, Guillermo [1 ]
Velazquez-Caldelas, Tadeo E. [1 ]
Espinal-Enriquez, Jesus [1 ,2 ]
Hernandez-Lemus, Enrique [1 ,2 ]
机构
[1] Natl Inst Genom Med, Computat Genom, Mexico City, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Complejidad Biol Sistemas, Mexico City, DF, Mexico
来源
FRONTIERS IN PHYSIOLOGY | 2016年 / 7卷
关键词
gene regulatory networks; breast cancer; molecular subtypes; network topology; clinical genomics; GENE REGULATORY NETWORKS; CANNABINOID RECEPTOR; EXPRESSION SIGNATURE; HISTOLOGIC GRADE; BIOLOGY; CELLS; METASTASIS; INFERENCE; PATHWAY; PREDICTOR;
D O I
10.3389/fphys.2016.00568
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer.
引用
收藏
页数:14
相关论文
共 106 条
  • [1] The inference of breast cancer metastasis through gene regulatory networks
    Ahmad, F. K.
    Deris, S.
    Othman, N. H.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2012, 45 (02) : 350 - 362
  • [2] Scale-free networks in cell biology
    Albert, R
    [J]. JOURNAL OF CELL SCIENCE, 2005, 118 (21) : 4947 - 4957
  • [3] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [4] [Anonymous], 2009, BAYESIAN NETWORKS DE
  • [5] [Anonymous], 2010, Networks: An Introduction, DOI 10.1162/artl_r_00062
  • [6] The Role of Master Regulators in the Metabolic/Transcriptional Coupling in Breast Carcinomas
    Baca-Lopez, Karol
    Mayorga, Miguel
    Hidalgo-Miranda, Alfredo
    Gutierrez-Najera, Nora
    Hernandez-Lemus, Enrique
    [J]. PLOS ONE, 2012, 7 (08):
  • [7] Faster cyclic loess: normalizing RNA arrays via linear models
    Ballman, KV
    Grill, DE
    Oberg, AL
    Therneau, TM
    [J]. BIOINFORMATICS, 2004, 20 (16) : 2778 - 2786
  • [8] Network biology:: Understanding the cell's functional organization
    Barabási, AL
    Oltvai, ZN
    [J]. NATURE REVIEWS GENETICS, 2004, 5 (02) : 101 - U15
  • [9] Network medicine: a network-based approach to human disease
    Barabasi, Albert-Laszlo
    Gulbahce, Natali
    Loscalzo, Joseph
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (01) : 56 - 68
  • [10] Reverse engineering of regulatory networks in human B cells
    Basso, K
    Margolin, AA
    Stolovitzky, G
    Klein, U
    Dalla-Favera, R
    Califano, A
    [J]. NATURE GENETICS, 2005, 37 (04) : 382 - 390