A Ranking Method of Hexagonal Fuzzy Numbers Based on Their Possibilistic Mean Values

被引:0
作者
Leela-apiradee, Worrawate [1 ]
Thipwiwatpotjana, Phantipa [2 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Pathum Thani 12121, Thailand
[2] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
来源
FUZZY TECHNIQUES: THEORY AND APPLICATIONS | 2019年 / 1000卷
关键词
Hexagonal fuzzy number; Possibilistic mean value; Ranking; VARIANCE;
D O I
10.1007/978-3-030-21920-8_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hexagonal fuzzy number (HFN) with its membership function as a nonlinear function, which is a generalization of triangular fuzzy numbers, trapezoidal fuzzy numbers, linear pentagonal fuzzy numbers and linear hexagonal fuzzy numbers, is defined in this paper. Cardinality of HFN is applied to achieve an algorithm for classifying types of HFNs. In addition, we present a ranking method for those fuzzy numbers based on their possibilistic mean values. Therefore, an explicit formula of the possibilistic mean value of HFN is proposed.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 23 条
  • [1] Median value and median interval of a fuzzy number
    Bodjanova, S
    [J]. INFORMATION SCIENCES, 2005, 172 (1-2) : 73 - 89
  • [2] On possibilistic mean value and variance of fuzzy numbers
    Carlsson, C
    Fullér, R
    [J]. FUZZY SETS AND SYSTEMS, 2001, 122 (02) : 315 - 326
  • [3] Christi A., 2016, INT J ENG RES APPL, V6, P76
  • [4] Dhanam K., 2016, INT J MATH SOFT COMP, V6, P93
  • [5] Dhanam K., 2017, INT J PURE APPL MATH, V113, P1
  • [6] Dinagar D.S., 2016, INT J MATH APPL, V4, P357
  • [7] Dinagar D.S., 2017, INT J PURE APPL MATH, V115, P147
  • [8] Elumalai P., 2017, EMPEROR INT J FINANC, P52
  • [9] On weighted possibilistic mean and variance of fuzzy numbers
    Fullér, R
    Majlender, N
    [J]. FUZZY SETS AND SYSTEMS, 2003, 136 (03) : 363 - 374
  • [10] Ghadle KP., 2017, GLOB J PURE APPL MAT, V13, P6367