Polymer biophotonic lab-on-a-chip devices with integrated organic semiconductor lasers

被引:2
|
作者
Mappes, Timo [1 ]
Vannahme, Christoph [2 ,3 ]
Klinkhammer, Soenke [2 ,3 ]
Woggon, Thomas [3 ]
Schelb, Mauno [1 ]
Lenhert, Steven [4 ]
Mohr, Juergen [2 ]
Lemmer, Uli [3 ]
机构
[1] Univ Karlsruhe TH, Inst Mikrostrukturtech, D-76128 Karlsruhe, Germany
[2] Forschungszentrum Karlsruhe, Inst Mikrostrukturtech, D-76344 Eggenstein Leopoldshafen, Germany
[3] Univ Karlsruhe TH, Lichttech Inst, D-76128 Karlsruhe, Germany
[4] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
来源
ORGANIC SEMICONDUCTORS IN SENSORS AND BIOELECTRONICS II | 2009年 / 7418卷
关键词
lab-on-a-chip; organic laser; polymer waveguide; PMMA; biophotonics; microfluidics; DPN; DUV-INDUCED MODIFICATION; WAVE-GUIDES; LIGHT; FABRICATION; CIRCUITS; DIODE;
D O I
10.1117/12.825918
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present optofluidic lab-on-a-chip devices (LOCs) for single use as disposables. In our approach we are aiming for systems out of poly(methyl methacrylate) (PMMA) that integrate (a) organic lasers, (b) optical waveguides, (c) microfluidic channels, (d) surface functionalization, and (e) fluorescence excitation on one single chip. We are utilizing mass production techniques to show the applicability of this approach by avoiding electrical interconnects but using optical and fluidic interfaces only. With our experiments we can show the feasibility of this approach by respectively combining two consecutive elements (a - e) of the path of light: Organic semiconductor lasers are integrated by evaporating a thin film of photoactive material on top of a distributed feedback (DFB) grating. For this purpose, grating masters are replicated by hot embossing into PMMA bulk material. The lasing wavelength in the visible light regime is tuned by altering the thickness of the vacuum deposited organic semiconductor active material or the DFB grating period. Emitted light from the DFB laser is coupled into polymer strip optical waveguides realized by Deep UV lithography. The waveguides allow optical guidance to a microfluidic channel. Tailored surface functionalization in the microfluidic channel by Dip-Pen Nanolithography (DPN) enables the local excitation of fluorescent markers and thus a detection of selected components in biomedical or environmentally relevant fluids.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors
    Mappes, Timo
    Vannahme, Christoph
    Schelb, Mauno
    Lemmer, Uli
    Mohr, Juergen
    MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 1499 - 1501
  • [32] Integration of Opto-Fluidic Microring Resonator Lasers for Lab-On-a-Chip Development
    Suter, Jonathan D.
    Sun, Yuze
    Howard, Daniel J.
    Viator, John A.
    Fan, Xudong
    PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS II, 2008, 7056
  • [33] Multiplexed optical pathogen detection with lab-on-a-chip devices
    Schulze, Holger
    Giraud, Gerard
    Crain, Jason
    Bachmann, Till T.
    JOURNAL OF BIOPHOTONICS, 2009, 2 (04) : 199 - 211
  • [34] Chitosan to electroaddress biological components in lab-on-a-chip devices
    Liu, Y.
    Shi, X. -W.
    Kim, E.
    Robinson, L. M.
    Nye, C. K.
    Ghodssi, R.
    Rubloff, G. W.
    Bentley, W. E.
    Payne, G. F.
    CARBOHYDRATE POLYMERS, 2011, 84 (02) : 704 - 708
  • [35] Lab-on-a-chip devices for microbial monitoring and detection in water
    Liu, W.-T.
    Lay, C.
    SUSTAINABLE AND SAFE WATER SUPPLIES, 2007, 7 (02): : 165 - 172
  • [36] Nanowire integrated microelectrode arrays for lab-on-a-chip applications
    Abraham, Jose K.
    Yoon, Hargsoon
    Varadan, Vijay
    Chintakuntla, Ritesh
    NANOSENSORS, MICROSENSORS, AND BIOSENSORS AND SYSTEMS 2007, 2007, 6528
  • [37] Fully integrated optical systems for lab-on-a-chip applications
    Balslev, S
    Bilenberg, B
    Nilsson, D
    Jorgensen, AM
    Kristensen, A
    Geschke, O
    Kutter, JP
    Mogensen, KB
    Snakenborg, D
    OPTOELECTRONIC INTEGRATION ON SILICON II, 2005, 5730 : 211 - 217
  • [38] Analysis of Optofluidic Coupling for Integrated Lab-on-a-chip Applications
    Narayan, K.
    Pattnaik, P. K.
    Gharc, D. B.
    Srinivas, T.
    2014 IEEE Healthcare Innovation Conference (HIC), 2014, : 18 - 21
  • [39] Modeling and Simulation of Acoustic Propagation for Mixing and Pumping Fluids in Lab-on-a-Chip Devices
    Catarino, S. O.
    Miranda, J. M.
    Lanceros-Mendez, S.
    Minas, G.
    2012 IEEE 2ND PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2012,
  • [40] Design and development of a microfluidic droplet generator with vision sensing for lab-on-a-chip devices
    Hettiarachchi, Samith
    Melroy, Gehan
    Mudugamuwa, Amith
    Sampath, Peshan
    Premachandra, Charith
    Amarasinghe, Ranjith
    Dau, Van
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 332